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Let R be a commutative ring with 1 �= 0. Recall that a proper ideal I of R is called a
2-absorbing ideal of R if a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. A
more general concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let
n ≥ 1 be a positive integer. A proper ideal I of R is called an n-absorbing ideal of R if
a1, a2, . . . , an+1 ∈ R and a1, a2 · · · an+1 ∈ I, then there are n of the ai’s whose product
is in I. The concept of n-absorbing ideals is a generalization of the concept of prime
ideals (note that a prime ideal of R is a 1-absorbing ideal of R). Let m and n be integers
with 1 ≤ n < m. A proper ideal I of R is called an (m, n)-closed ideal of R if whenever
am ∈ I for some a ∈ R implies an ∈ I. Let A be a commutative ring with 1 �= 0 and
M be an A-module. In this paper, we study n-absorbing ideals and (m, n)-closed ideals
in the trivial ring extension of A by M (or idealization of M over A) that is denoted by
A(+)M .

Keywords: Prime ideal; radical ideal; 2-absorbing ideal; n-absorbing ideal; (m, n)-closed
ideal; trivial extension; idealization of a ring.

Mathematics Subject Classification 2010: 13A15, 13F05, 13G05

1. Introduction

We assume throughout that all rings are commutative with 1 �= 0. Over the past
several years, there has been considerable attention in the literature to n-absorbing
ideals of commutative rings and their generalizations, for example see ([2–8, 10–22,

¶Corresponding author.
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24–29, 31]). We recall from [4] that a proper ideal I of R is called a 2-absorbing
ideal of R if a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. A more general
concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let n ≥ 1 be
a positive integer. A proper ideal I of R is called an n-absorbing ideal of R as in
[2] if a1, a2, . . . , an+1 ∈ R and a1, a2 · · ·an+1 ∈ I, then there are n of the ai’s whose
product is in I. A proper ideal of R is called a strongly n-absorbing ideal of R as in
[2] if whenever I1 · · · In+1 ⊆ I for ideals I1, . . . , In+1 of R, then the product of some
n of the I ′js is contained in I. The concept of n-absorbing ideals is a generalization
of the concept of prime ideals (note that a prime ideal of R is a 1-absorbing ideal
of R). Let m and n be the positive integers with 1 ≤ n < m. We recall from [3]
that a proper ideal I of R is called an (m, n)-closed ideal of R if whenever am ∈ I

for some a ∈ I implies an ∈ I.
Let A be a commutative ring and M be an A-module. The trivial ring extension

of A by M (or the idealization of M over A) is the ring R = A(+)M whose
underlying group is A × M with multiplication given by (a, b)(c, d) = (ac, ad +
bc) (for example see [23]). In this paper, we study n-absorbing ideals, strongly
n-absorbing ideals, and (m, n)-closed ideals in the ring R = A(+)M . We start
by recalling some background materials. We say A is a quasilocal ring if A has
exactly one maximal ideal. If I is a primary ideal of a ring A with

√
I = P (a

prime ideal of A), then we say that I is a P-primary ideal of A. A prime ideal
P of a ring A is called divided if P ⊂ x for every x ∈ A\P . Suppose that I

is a n-absorbing ideal of a ring A for some integer n ≥ 1. Then, as in [2], we
put wA(I) = min{n ∈ N | I is n-absorbing ideal of A}, and w∗

A(I) = min{n ∈
N | I is a strongly n-absorbing ideal of A}. Let A be a commutative ring and M

be an A-module. Then a submodule N of M is called a P -primary submodule of M

for some prime ideal P of A if (N : M) = {x ∈ A |xM ⊆ N} is a primary ideal of
A with

√
(N : M) = {a ∈ A | anM ⊆ N for some integer n ≥ 1} = P .

Let n ≥ 1 be an integer and I be a proper ideal of A. Anderson and Badawi in
[2] (also see [10]) proposed the following three conjectures:

(1) Conjecture one: I is an n-absorbing ideal of A if and only if I is a strongly
n-absorbing ideal of A.

(2) Conjecture two: If I is an n-absorbing ideal of A, then (
√

I)n ⊆ I. An affirmative
answer to this conjecture is given in [15].

(3) Conjecture three: If I is an n-absorbing ideal of A, then I[X ] is an n-absorbing
ideal of A[X ].

In this paper, we study the validity of the above three conjectures in the ring
R = A(+)M .

2. n-Absorbing Ideals in Trivial Ring Extensions

We recall [1, Corollary 3.4] that if A is an integral domain and M is a divisible
A-module, then every ideal of A(+)M has the form I(+)M for some proper ideal
I of A or 0(+)N for some submodule N of M .
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In the following result, we collect some trivial facts about n-absorbing ideals
and (m, n)-closed ideals in R = A(+)M and hence we omit the proof.

Theorem 2.1. Let A be a commutative ring, I be a proper ideal of A, M be an
A-module, and R = A(+)M . Then

(1) I is an n-absorbing ideal of A if and only if I(+)M is an n-absorbing ideal
of R.

(2) I is a strongly n-absorbing ideal of A if and only if If I(+)M is a strongly
n-absorbing of R.

(3) I is an (m, n)-closed ideal of A if and only if I(+)M is an (m, n)-closed ideal
of R.

Example 2.2. Let A be a field and M be an A-vector space. It is clear that R =
A(+)M is a quasilocal ring with the maximal is M = {0}(+)M. Since M2 = {0},
we conclude that every ideal of R is a 2-absorbing ideal of R and hence a strongly
2-absorbing ideal of R by [4, Theorem 2.13]. Thus every ideal of R is a strongly
n-absorbing ideal of R for every n ≥ 2.

We recall the following results.

Theorem 2.3. (1) ([15]) If I is an n-absorbing ideal of a ring A for some integer
n ≥ 1, then (

√
I)n ⊆ I.

(2) ([2, Theorem 3.1]) Let P be a prime ideal of a ring A, and let I be a P-primary
ideal of A such that Pn ⊆ I for some positive integer n (for example, if A is a
Noetherian ring). Then I is an n-absorbing ideal of A.

(3) ([2, Theorem 6.6]) Let P be a prime ideal of a ring A, I be a P-primary ideal
of A, and n ≥ 1 be an integer. Then I is a strongly n-absorbing ideal of A if
and only if Pn ⊆ I and I is an n-absorbing ideal of R.

(4) ([2, Theorem 3.2]) Let P be a divided prime ideal of A, and let I be an
n-absorbing ideal of A with

√
I = P . Then I is a P-primary ideal of A.

(5) ([2, Theorem 3.3]) Assume that
√{0} ⊂ P are divided prime ideals of A and

n ≥ 1 be an integer. Then Pn is a P-primary ideal of A, and thus Pn is an
n-absorbing ideal of A.

In view of Theorem 2.3, we have the following result.

Corollary 2.4. (1) Let P be a prime ideal of a ring A, n ≥ 1 be an integer, and
let I be a P-primary ideal of A. Then I is an n-absorbing ideal of A if and only
if Pn ⊆ I if and only if I is a strongly n-absorbing ideal of A.

(2) Let P be a divided prime ideal of A, and let I be a proper ideal of A with√
I = P . Then I is an n-absorbing ideal of A if and only if I is a P-primary

ideal of A and Pn ⊆ I if and only if I is a strongly n-absorbing ideal of A.
(3) Assume that

√{0} ⊂ P are divided prime ideals of A and n ≥ 1 be an integer.
Then Pn is a strongly n-absorbing ideal of A.
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Proof. (1) By Theorem 2.3[(1), (2), (3)], the claim follows.
(2) By Theorem 2.3[(4), (1), (2), (3)], the claim follows.
(3) By Theorem 2.3[(5), (2), (3)], the claim follows.

Theorem 2.5. Let A be a commutative ring, M be an A-module, R = A(+)M,

n ≥ 1 be an integer, I be a proper ideal of A, and N be a submodule of M such that
IM ⊆ N. Then:

(1) If I(+)N is an n-absorbing ideal of R, then I is an n-absorbing ideal of A.
(2) Let P be a prime ideal of A, I be a P-primary ideal of A, and N be a P-primary

submodule of M . Then I is an n-absorbing ideal of A if and only if I(+)N is
an n-absorbing ideal of R.

(3) Let P be a prime ideal of A, I be a P-primary ideal of A, and N be a P-primary
submodule of M . Then I(+)N is an n-absorbing ideal of R if and only if I(+)N
is a strongly n-absorbing ideal of R.

(4) Let P be a divided prime ideal of A, I be an n-absorbing ideal of A with
√

I = P,

and N be a P-primary submodule of M . Then I(+)N is a strongly n-absorbing
ideal of R.

(5) Assume that
√{0} ⊂ P are divided prime ideals of A such that PnM ⊆ N .

If N is a P-primary submodule of M, then Pn(+)N is a strongly n-absorbing
ideal of R.

(6) Assume that A is a Prüfer domain and let J = I(+)M . Then J = I(+)M is
an n-absorbing ideal of R if and only if J is a strongly n-absorbing ideal of R.
Moreover w(J) = w∗(J).

Proof. (1) No comments.
(2) Since I is a P -primary ideal of A and N is a P -primary submodule of M , we con-

clude that I(+)N is a P (+)M -primary ideal of R by [1, Theorem 3.6]. Suppose
that I is an n-absorbing ideal of A. Then (

√
I)n = Pn ⊆ I by Theorem 2.3(1).

Hence (
√

I(+)N)n = (P (+)M)n ⊆ Pn(+)N ⊆ I(+)N . Thus, I(+)N is an
n-absorbing ideal of R by Corollary 2.4(1). Conversely, suppose that I(+)N
is an n-absorbing ideal of R. Then (

√
I(+)N)n = (P (+)M)n ⊆ I(+)N by

Theorem 2.3(1). In particular, Pn ⊆ I. Since I is a P -primary ideal of A and
Pn ⊆ P , we conclude that I is an n-absorbing ideal of A by Corollary 2.4(1).

(3) Since I(+)N is a P (+)M -primary ideal of R by [1, Theorem 3.6] and
(
√

I(+)N)n = (P (+)M)n ⊆ I(+)N by Theorem 2.3(1), the claim follows by
Theorem 2.3(3).

(4) By Corollary 2.4(2), we conclude that I is a P -primary ideal of A. Hence we
are done by (2) and (3).

(5) By Theorem 2.3, we conclude that Pn is a P -primary ideal of A and hence an
n-absorbing ideal of A. Thus we are done by (2) and (3).

(6) Suppose that J = I(+)M is an n-absorbing ideal of R. Then I is an n-absorbing
ideal of A. Since A is a Prüfer domain, we conclude that I is a strongly
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n-absorbing ideal of A by [2, Corollary 6.9]. Hence J = I(+)M is s strongly
n-absorbing ideal of R. The converse is clear. It is clear that w(J) = w∗(J).

3. Conjecture One in Trivial Ring Extension

Let n ≥ 1 be an integer and I be a proper ideal of a ring A. Anderson and Badawi
in [2] (also see [10]) proposed the following conjecture.

Conjecture one: I is an n-absorbing ideal of A if and only if I is a strongly
n-absorbing ideal of A.

Laradji in [27] proved that conjecture one holds in some rings that satisfy certain
conditions. In particular, he proved that Conjecture three implies Conjecture one.
We have the following lemma.

Lemma 3.1. Let A be an integral domain with quotient field K, M be a K-vector
space, F be a K-subspace of M, and R = A(+)M. Then J = {0}(+)F is a strongly
2-absorbing ideal of R, and thus J is a strongly n-absorbing ideal of R for every
n ≥ 2.

Proof. First, we show that J is a 2-absorbing ideal of R. Let xi = (ai, ei) ∈ R,
where 1 ≤ i ≤ 3. Suppose that x1x2x3 ∈ {0}(+)F . Since A is an integral domain,
we may assume that a3 = 0. Suppose that a1a2 = 0. Then x1x3 ∈ J or x2x3 ∈ J .
Suppose that a1a2 �= 0. Then x1x2x3 = (0, a1a2e3). Since F is a K-subspace of
M , we conclude that a−1

2 a−1
1 (a1a2e3) = e3 ∈ F . Hence x3 = (0, e3) ∈ J , and thus

x1x3 ∈ J . Hence J is a 2-absorbing ideal of R. Thus, J is a strongly 2-absorbing
ideal of R by [4, Theorem 2.13], and hence J is a strongly n-absorbing ideal of R

for every n ≥ 2.

Theorem 3.2. Let A be an integral domain with quotient field K, M be a K-vector
space, F be an A-submodule of M, and R = A(+)M . Then {0}(+)F is an
n-absorbing ideal of R for some n ≥ 2 if and only if F is a K-subspace of M .

Proof. Suppose that J = {0}(+)F is an n-absorbing ideal of R for some n ≥ 2.
Let a be a nonzero element of A and f ∈ F . We show 1

af ∈ F . Let x = (a, 0), y =
(0, f

an ) ∈ R. Then xny = (0, f) ∈ J . Since a �= 0 and J is an n-absorbing ideal
of R, we conclude that xn−1y = (0, f

a ) ∈ J . Thus, 1
af ∈ F . Now let h ∈ K and

v ∈ F . Then h = b
c ∈ K for some b, c ∈ A with c �= 0. Since 1

cv ∈ F and F is an
A-submodule of M , we conclude that hv = b

cv ∈ F . Thus, F is a K-subspace of
M . The converse is clear by Lemma 3.1.

Corollary 3.3. Let A be an integral domain that is not a field with quotient field
K, and R = A(+)K. Then J = {0}(+)A is not an n-absorbing ideal of R for every
n ≥ 1.
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Proof. Since A is not a field, we conclude that A is not a K-subspace of K. Hence
we are done by Theorem 3.2.

Theorem 3.4. Let A be an integral domain with quotient field K, M be a K-vector
space, and R = A(+)M. Then Conjecture one holds in R if and only if Conjecture
one holds in A.

Proof. First, observe that M is a divisible A-module. Hence every ideal of R =
A(+)M has the form I(+)M for some proper ideal I of A or 0(+)N for some
submodule N of M by [1, Corollary 3.4].

Suppose that Conjecture one holds in R. Let I be a proper n-absorbing ideal of
A for some integer n ≥ 1. Then J = I(+)M is a n-absorbing ideal of R = A(+)M ,
and hence a strongly n-absorbing ideal R by hypothesis. Thus, I is a strongly
n-absorbing ideal of A by Theorem 2.1(2).

Conversely, suppose that Conjecture one holds in A. Let J be a proper
n-absorbing ideal of R = A(+)M for some n ≥ 1. Hence J is the form I(+)M
where I is a proper ideal of A or 0(+)F where F is a K-subspace of M.

Case 1. J = I(+)M , where I is a proper ideal of A. Since J is an n-absorbing
ideal of R, we conclude that I is an n-absorbing ideal of A by Theorem 2.1(1), and
hence I is a strongly n-absorbing ideal of A by hypothesis. Thus, J = I(+)M is a
strongly n-absorbing ideal of R = A(+)M by Theorem 2.1(2).

Case 2. J = {0}(+)F , where F is an A-submodule of M . If n = 1, then F = M

and we are done. Hence assume that n ≥ 2. Since J is an n-absorbing ideal of R,
we conclude that F is a K-subspace of M by Theorem 3.2. Hence J is a strongly
n-absorbing ideal of R for every n ≥ 2 by Lemma 3.1. Thus, Conjecture one holds
in R = A(+)M .

Corollary 3.5. Let A be a Prüfer domain with quotient field K, M be K-vector
space, and R = D(+)M. Then Conjecture one holds in R.

Proof. Since A is a Prüfer domain, Conjecture one holds in A by [2, Corollary 6.9].
Thus Conjecture one holds in R by Theorem 3.4.

We recall the following result.

Theorem 3.6 ([2, Corollary 6.8]). Let R be a Noetherian ring. Then every
proper ideal of R is a strongly n-absorbing ideal of R for some positive integer n.

Theorem 3.7. Let A be a Noetherian ring, M be an A-module, R = A(+)M, and
I be a proper ideal of A. Then J = I(+)M is a strongly n-absorbing ideal of R for
some positive integer n.

Proof. Since I is a strongly n-absorbing ideal of A for some positive integer n by
Theorem 3.6, we conclude that J = I(+)M is a strongly n-absorbing ideal of R.
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Theorem 3.8. Let A be a Noetherian ring, M be a finitely generated A-module,
and R = A(+)M . Then every ideal of R is a strongly n-absorbing ideal of R for
some positive integer n.

Proof. Since A be a Noetherian ring and M is a finitely generated A-module, we
conclude that R is a Noetherian ring by [1, Theorem 4.8]. Hence the claim follows
from Theorem 3.6.

Question 1. In view of Theorem 3.6, El Amin El Kaidi asked the following
question: Let A be a ring and assume that every ideal of A is an n-absorbing
ideal of R for some integer n ≥ 1. Does it imply that A is a Noetherian ring?

The following example gives a negative answer to the above question.

Example 3.9. Let A ⊂ K be fields such that K is not a finitely generated
A-module (for example, let A = Q and K = R) and R = A(+)K. Since R is a
quasilocal ring with maximal ideal M = {0}(+)K and M2 = {(0, 0)}, we conclude
that every ideal of R a 2-absorbing ideal of R (and hence every ideal of R is a
strongly n-absorbing ideal of R for every n ≥ 2 by [4, Theorem 2.13]). Since K

is not a finitely generated A-module, we conclude that {0}(+)K is not a finitely
generated of R. Thus R is not a Noetherian ring.

Remark 3.10. Let R be a ring and n a positive integer such that every proper ideal
of R is an n-absorbing ideal of R. Then by [2, Theorem 5.9], we have dim(R) = 0
and R has at most n maximal ideals.

We have the following result.

Theorem 3.11. Let A be an integral domain with quotient field K, M be a finite
dimensional vector space over K, and R = A(+)M . Then every proper ideal of R

is an n-absorbing ideal of R for some n ≥ 1 if and only if A = K.

Proof. Suppose that A = K. Since M is a finite dimensional vector space over
K, we conclude that R a Noetherian ring by [1, Theorem 4.8]. Hence every proper
ideal of R is an n-absorbing ideal of R for some n ≥ 1 by Theorem 3.6. Conversely,
suppose that every proper ideal of R is an n-absorbing ideal of R for some n ≥ 1.
Since M is a finite dimensional vector space over K, we may assume that M =
K × · · · × K (m times, where m = dimK(M) < ∞). Hence N = A × · · · × A

is a an A-submodule of M and J = {0} × N is a 2-absorbing ideal of R. Since
J = {0}×N is a 2-absorbing ideal of R, we conclude that N is a K-subspace of M

by Theorem 3.2. Thus, A = K.

In light of Theorems 3.6 and 3.11, we have the following result.

Corollary 3.12. Let A be an integral domain with quotient field K, M be a finite
dimensional vector space over K, and R = A(+)M . Then the following statements
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are equivalent.

(1) Every proper ideal of R is a strongly n-absorbing ideal of R for some n ≥ 1.
(2) Every proper ideal of R is an n-absorbing ideal of R for some n ≥ 1.
(3) A = K.
(4) A is a Noetherian ring.
(5) R is a Noetherian ring.

Theorem 3.13. Let A be a Noetherian domain with quotient field K, M be a
K-vector space, and R = A(+)M . Then a proper ideal J of R is an n-absorbing
ideal of R for some n ≥ 1 if and only if J is a strongly m-absorbing ideal of R for
some m ≥ 1.

Proof. If n = 1 or m = 1. Then J is a prime ideal of R, and hence the claim is clear.
Let J be a proper ideal of R. Since M is a divisible A-module, we conclude that
J = I(+)M for some proper ideal I of A or J = {0}(+)F for some A-submodule
F of M by [1, Corollary 3.4]. Suppose that J is n-absorbing ideal of R for some
n ≥ 2. Assume that J = I(+)M for some proper ideal I of A. Since I is a strongly
m-absorbing ideal of A for some positive integer m by Theorem 3.6, we conclude
that J = I(+)M is a strongly m-absorbing ideal of R. Suppose that J = {0}(+)F
for some A-submodule F of M . Then F is a K-subspace of M by Theorem 3.2.
Thus J is a strongly k-absorbing ideal of R for every integer k ≥ 2 by Lemma 3.1.
The converse is clear.

4. Conjecture Three in Trivial Ring Extension

Let A be a commutative ring, and M an A-module, let R = A(+)M, we know
(A(+)M)[X ] is naturally isomorphic to A[X ](+)M [X ]. If I is a ideal of A, then
(I(+)M)[X ] is naturally isomorphic to I[X ](+)M [X ].

We recall the following result.

Theorem 4.1 ([2, Theorem 4.15]). Let I be a proper ideal of a ring A. Then
I[X ] is a 2-absorbing ideal of R[X ] if and only if I is a 2-absorbing ideal of R.

Theorem 4.2. Let A be an integral domain with quotient field K, M be a K-vector
space, and R = A(+)M . Then Conjecture three holds in R if and only if Conjecture
three holds in A.

Proof. Suppose the Conjecture three holds in A. Let J be a proper n-absorbing
ideal of R for some n ≥ 1. Hence J = I(+)M for some proper ideal I of
A or J = {0}(+)F for some K-subspace F of M by [1, Corollary 3.4] and
Theorem 3.2.

Case 1. Suppose that J = I(+)M for some proper ideal I of A. Then I is an
n-absorbing ideal of A. Thus I[X ] is an n-absorbing ideal of A[X ] by hypoth-
esis. Hence wA(I) = wA[X](I[X ]). Since J [X ] is isomorphic to I[X ](+)M [X ],
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we conclude that J [X ] is an n-absorbing ideal of R[X ]. Since wR[X](J [X ]) =
wA[X](+)M [X](I[X ](+)M [X ]) = wA[X](I[X ]) = wA(I). Hence wR[X](J [X ]) =
wR(J).

Case 2. Suppose that J = 0(+)F for some K-subspace F of M .
Since J is a 2-absorbing ideal of R, we conclude that J [X ] is a 2-absorbing

absorbing ideal of R[X ] by Theorem 4.1. Hence Conjecture three holds in R.
Conversely, suppose that Conjecture three holds in R. Let I be an n-absorbing

ideal of A. Then I(+)M is n-absorbing ideal of R. Hence (I(+)M)[X ] is n-absorbing
ideal of R[X ] by hypothesis. Since (I(+)M)[X ] ∼= I[X ](+)M [X ], we conclude that
I[X ] is an n-absorbing ideal of A[X ].

Laradji [27, Corollary 2.11] showed that Conjecture three holds in arithmetical
rings. Since a Prüfer domain is both arithmetical and Gaussian ring, the following
result is an immediate consequence of [27, Corollary 2.11] and [31, Theorem 2.6].

Lemma 4.3 ([27, Corollary 2.11] and [31, Theorem 2.6]). Let A be a Prüfer
domain and I be a proper n-absorbing ideal of A for some integer n ≥ 1. Then I[X ]
is an n-absorbing ideal of A[X ].

In the following result, we construct rings with zero-divisors that satisfy Con-
jecture three but they do not need be arithmetical rings.

Theorem 4.4. Let A be a Prüfer domain with quotient field K, M be K-vector
space, n be a positive integer, and J be a proper ideal of R = A(+)M (note that
if M = K[X ], then R is not an arithmetical ring by [9, Theorem 2.1(2)]). If J is
an n-absorbing ideal of R, then J [X ] is an n-absorbing ideal of R[X ] and wR(J) =
wR[X](J [X ]).

Proof. Since A is a Prüfer domain, Conjecture three holds in A by Lemma 4.3.
Thus Conjecture three holds in R by Theorem 4.2. Thus, If J is an n-absorbing ideal
of R, then J [X ] is an n-absorbing ideal of R[X ] and wR(J) = wR[X](J [X ]).

In the following example, we construct a non-arithmetical ring that satisfies
Conjecture three.

Example 4.5. Let A be a Prüfer domain with quotient field K, M = K[X ], and
R = A(+)M . Then:

(1) R satisfies Conjecture three by Theorem 4.4.
(2) R is a non-arithmetical ring by [9, Theorem 2.1(2)].

Remark 4.6. Let I be a proper ideal of a ring A and n ≥ 1. It is shown [2,
Theorem 6.1] that if I is a strongly n-absorbing ideal of A, then (

√
I)n ⊆ I. It is

shown [27, Proposition 2.9(1)] that if I[X ] is an n-absorbing ideal of A[X ], then I

is a strongly n-absorbing ideal of A. It is shown [27, Corollary 2.11] that if I is an
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n-absorbing ideal of an arithmetical ring A, then I[X ] is an n-absorbing ideal of
A[X ]. Hence if A is an arithmetical ring, then all three Conjectures hold in A.

In the following result, we construct rings with zero-divisors that satisfy all three
conjectures but they do not need be arithmetical rings.

Theorem 4.7. Let A be a Prüfer domain with quotient field K, M be K-vector
space, n be a positive integer, and R = A(+)M (note that if M = K[X ], then R is
not an arithmetical ring by [9, Theorem 2.1(2)]). Suppose that J is an n-absorbing
ideal of R. Then the following statements hold :

(1) J is a strongly n-absorbing ideal of R.
(2) J [X ] is an n-absorbing ideal of R.
(3) (

√
J)n ⊆ J .

Proof. (1) It is clear by Corollary 3.5.
(2) It is clear by Theorem 4.4.
(3) It is clear by [15].

5. Conjecture One in u-Rings

We recall from [30] that commutative ring R is called a u-ring if whenever an
ideal I of R is contained in a finite union of ideals of R, then I is contained in at
least one of those ideals. It is known that every Bezout ring is a u-ring and every
Prüfer domain is a u-domain. In [31, Theorem 2.4], Smach and Hizem showed that
Conjecture one holds in u-rings. In this section, we propose a proof of this result
that is different from that in [31, Theorem 2.4]. We need the following notation.
Let R be a commutative ring. If x1, . . . , xn ∈ R, then x1, . . . , x̂k · · ·xn denotes
the product x1 · · ·xn that omits xk. Similarly, if I1, . . . , In+1 are ideals of R, then
I1 · · · Îk · · · In+1 denotes the product I1, . . . , In+1 that omits Ik. We start with the
following lemmas.

Lemma 5.1. Let R be a commutative ring. Suppose there are ideals I1, . . . , In+1 of
R such that I1 · · · .In+1 = {0} and no product of n of the Ij ’s is equal to {0}. Then
there are finitely generated ideals J1, . . . , Jn+1 of R such that J1 · · · Jn+1 = {0} and
no product of n of the Ji’s is equal to {0}.

Proof. Suppose there are ideals I1, . . . , In+1 of R such that I1 · · · .In+1 = {0} and
no product of n of the Ij ’s is equal to {0}.

Let j ∈ {1, . . . , n + 1}. Since
∏n+1

i=1,i�=j Ii �= {0} for all i �= j, there exist ai,j ∈ Ii

such that
∏n+1

i=1,i�=j ai,j �= {0}. Let Jj = (a1,j , . . . , âj,j , . . . , an+1,j) the ideal gener-
ated by {ai,j , i �= j, i = 1, . . . , n + 1}. Since Jj ⊆ Ij , we have J1 · · · Jn+1 = {0}.
Thus,

∏n+1
i=1,i�=j Ji �= {0}, for every j ∈ {1, . . . , n + 1}, as desired.
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Lemma 5.2. Suppose that in any ring {0} is a strongly n-absorbing ideal if and
only if {0} is an n-absorbing ideal. Then every n-absorbing ideal in an arbitrary
ring R is a strongly n-absorbing ideal of R.

Proof. Suppose I is n-absorbing ideal in a ring A and let the canonical homomor-
phism f : R → R/I. Then {0} is an n-absorbing ideal of A′ = A/I by [2, The-
orem 4.2] and thus {0} is a strongly n-absorbing ideal of A′. Let I1, . . . , In+1 are
ideals of A such that

∏n+1
i=1 Ii ⊂ I, then

∏n+1
i=1 f(Ii) = {0}. Since {0} is a strongly

n-absorbing ideal of A′, there exist j ∈ {1, . . . , n+1} such that
∏n+1

i=1,i�=j f(Ii) = {0}
and so

∏n+1
i=1,i�=j Ii ⊂ I. Therefore, I is a strongly n-absorbing ideal of A.

Lemma 5.3. Let R be a commutative u-ring such that {0} is an n-absorbing ideal.
Then {0} is a strongly n-absorbing of R.

Proof. Let I1, . . . , In+1 be ideals of R such that I1 · · · In+1 = {0}. Assume that
there is no product of n ideals of the Ij ’s equals to zero. By Lemma 5.2, there
are finitely generated ideals J1, . . . , Jn+1 of R such that J1 · · ·Jn+1 = {0} and no
product of n of the Ji’s equals to {0}. Let nj be the minimal number of generators
for Jj , and ϕ(J1, . . . , Jn+1) =

∑n+1
i=1 nj . It is clear that ϕ(J1, . . . , Jn+1) ∈ {n+1, . . . ,

n(n + 1)}.
We will show by induction that there exists a product of n ideals of the Ji’s

equals to zero, which is the desired contradiction.
Suppose that ϕ(J1, . . . , Jn+1) =

∑n+1
i=1 nj = n + 1. Then for every j = 1, . . . ,

n+1, there exists an element aj ∈ R such that Jj = Raj. Hence, J1 · · · .Jn+1 = {0}.
Since {0} is an n-absorbing ideal of R, there exists one product a1 · · · âk · · · an+1 =
{0} and hence J1 · · · Ĵk · · ·Jn+1 = {0}.

Now, assume that whenever L1L2 · · ·Ln+1 = {0} for some ideals L1, . . . , Ln+1

of R and ϕ(L1, . . . , Ln+1) < ϕ(J1, . . . , Jn+1), there exists a k ∈ {1, . . . , n + 1} such
that L1 · · · L̂k · · ·Ln+1 = {0}. Since

∑n+1
j=1 nj > n + 1, without loss of generality,

suppose n1 > 1, and let a1 ∈ J1. Then a1J2 · · · Jn+1 = {0}. Let L1 = Ra1, and
for j ≥ 2, let Lj = Jj . Hence L1 · · ·Ln+1 = {0} and ϕ(L1, . . . , Ln+1) = 1 +∑n+1

k=2 nk < ϕ(J1, . . . , Jn+1). By induction there exists some j ∈ {2, . . . , n + 1}
such that L1J2 · · · Ĵj · · ·Jn+1 = {0}. Since J2 · · · .Jn+1 �= {0} by hypothesis, we
have a1 ∈ ann(Qj), where Qj = J2 · · · Ĵj · · ·Jn+1. Thus, J1 ⊂ ⋃n+1

i=1 ann(Qj). Since
R is a u-ring, there exists j ∈ {1, . . . , n + 1} such that J1 ⊂ ann(Qj). Thus,
J1 . . . Ĵj · · · Jn+1 = {0}, a contradiction. Therefore, there exists j ∈ {1, . . . , n +
1} such that I1 · · · Îj · · · In+1 equals to zero. Hence {0} is a strongly n-absorbing
of R.

Theorem 5.4. Let R be a commutative u-ring. Then R satisfies Conjecture one,
that is every n-absorbing ideal of R is a strongly n-absorbing ideal of R.
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Proof. Let R be a commutative u-ring. Suppose that I is a proper n-absorbing
ideal of R. Then the quotient ring R/I is a u-ring by [30, Proposition 1.3] and {0}
is an n-absorbing ideal of R/I. Therefore, {0} is a strongly n-absorbing of R/I by
Lemma 5.3. Hence I is a strongly n-absorbing ideal of R.

We recall from [30] that a ring A is called a um-ring if whenever an R-module
equal to a finite union of submodules must be equal to one of them.

Remark 5.5. Let R be a commutative ring and assume that R contains an infinite
set S such that x − y is a unit for all x �= y in S. Then R is a um-ring by [30,
Proposition 1.7]. It is shown [30, Theorem 2.3] that a ring R is a um-ring if and only
if R/M is infinite for every maximal ideal M of R. It is shown [30, Theorem 2.6] that
a ring R is an u-ring if and only if R/M is infinite or RM is a Bezout ring for every
maximal ideal M of R. Hence in view of [30, Theorem 2.3] and [30, Theorem 2.6],
we conclude that every um-ring is a u-ring. The converse is not true, for let R = Z.
Then R is a u-ring. Since R/M is finite for every maximal ideal M of R, we conclude
that R is not a um-ring.

In view of Remark 5.5, we have the following result.

Theorem 5.6. Let R be a um-ring. Then R is a u-ring.

The proof of the following result is similar to the proof of [30, Proposition 1.7].

Theorem 5.7. Let R be a commutative ring with 1 �= 0, n be a positive integer,
and I be a proper ideal of R. Suppose that R contains an infinite set S such that
x − y is a unit for all x �= y in S. Then R is a u-ring, and hence I is a strongly
n-absorbing of R if and only if I is an n-absorbing ideal of R.

Proof. Suppose that R contains an infinite set S such that x − y is a unit for all
x �= y in S. We show that R is a u-ring. Deny. Let I be an ideal of R and p ≥ 1
be an integer such that I ⊂ ⋃p

i=1 Ii, and suppose that for every i ∈ {1, . . . , p}, we
have I � Ii. We may assume that for each i ∈ {1, . . . , p}, we have I �

⋃
j �=i Ij .

Hence for each 1 ≤ i ≤ 2, there exists ai ∈ I such that ai /∈ ⋃
j �=i Ij . Consider

the set H = {a1 + xa2 |x ∈ S}. Then for every x ∈ S, we have a1 + xa2 ∈ I and
a1 + xa2 /∈ I2. Since H ⊆ I and H ∩ I2 = ∅, we have H ⊂ ⋃

j �=2 Ij . Since H is
infinite, there exist x1 �= x2 in S such that a1 + x1a2 and a1 + x2a2 ∈ Ii for some
i �= 2. Hence (x1 − x2)a2 ∈ Ii, and thus a2 ∈ Ii, which is a contradiction. Thus, R

is a u-ring.

Remark 5.8. One can give an alternative proof of Theorem 5.7. Note that since
R contains an infinite set S such that x− y is a unit for all x �= y in S, we conclude
that R is a um-ring by [30, Proposition 1.7]. Hence R is a u-ring by Theorem 5.6.

Theorem 5.9. Let A be a u-domain with quotient field K, M be a K-vector space,
and R = A(+)M . Then Conjecture one holds in R.
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Proof. Since A satisfies Conjecture one by Theorem 5.4, we conclude that R

satisfies Conjecture one by Theorem 3.4.

The following is an example of a ring that is not a u-ring but it satisfies Con-
jecture one.

Example 5.10. Let R = Z3(+)Z3[X ]. Then R satisfies Conjecture one by Theo-
rem 5.9. It is clear that M = {0}(+)Z3[X ] is the only maximum ideal of R. Since
neither R/M is infinite (note that R/M ∼= Z3) nor RM (note that RM = R) is a
Bezout ring, we conclude that R is not a u-ring by [30, Theorem 2.6]. Note that R

is not a um-ring by Theorem 5.6.

Theorem 5.11. Let A be a commutative um-ring, M be an A-module, and R =
A(+)M . Then Conjecture one holds in R.

Proof. Let H be a maximal ideal of R. Then H = L(+)M for some maximal ideal
L of A. Since R/H ∼= A/L and A is a um-ring, we conclude that A/L is infinite,
and thus R/H is infinite. Hence R is a um-ring by [30, Theorem 2.3]. Thus, R is a
u-ring by Theorem 5.6. Hence R satisfies Conjecture one by Theorem 5.4.

6. (m, n)-Closed Ideals in Trivial Ring Extension

Let R be a commutative ring with 1 �= 0. We recall from [3] that a proper ideal I

of R is called an (m, n)-closed ideal if xm ∈ I for x ∈ R implies xn ∈ I.

Theorem 6.1. Let A be a ring, M be an R-module, and R = A(+)M . Suppose
that J = I(+)N is a proper ideal of R, where I is a proper ideal of A and N is a
submodule of M such that IM ⊆ N . If I is an (m, n)-closed ideal of A for some
integers 0 < n < m, then J is an (m, n + 1)-closed ideal of R.

Proof. Suppose that I is an (m, n)-closed ideal of A for some integers 0 < n < m.
Let x = (a, c) ∈ R and suppose that xm = (am, mam−1c) ∈ J . Since I is an (m, n)-
closed ideal of A, we conclude that (an+1, (n + 1)anc) = xn+1 ∈ J . Thus J is an
(m, n + 1)-closed ideal of R.

In view of Theorem 6.1, the following is an example of an (3, 2)-closed ideal I of
Z but the proper ideal J = I(+)I of R = Z(+)Z is not an (3, 2)-closed ideal of R.

Example 6.2. Let R = Z(+)Z, p �= 2 be a positive prime number of Z, I = p4Z a
proper ideal of Z, and J = I(+)I. Then J is a proper ideal of R and I is an (3, 2)-
closed ideal of Z by [3, Corollary 3.3]. Let x = (p2, p) ∈ R. Then x3 = (p6, 3p5) ∈ J .
Since p �= 2, we have x2 = (p4, 2p3) /∈ J .

Lemma 6.3. Let A be a ring, M be an R-module, and R = A(+)M . Suppose
that J = I(+)N is a proper ideal of R, where I is an (m, n)-closed ideal of A for
some integers 0 < n < m, and N is a submodule of M such that IM ⊆ N . Let
x = (a, c) ∈ R for some a ∈ A and c ∈ M . Then xm ∈ J if and only if am ∈ I.
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Proof. Suppose that xm = (am, mam−1c) ∈ J . Then it is clear that am ∈ I.
Conversely, suppose that am ∈ I. Since I is an (m, n)-closed ideal of R, an ∈ I.

Since n ≤ m − 1, we conclude that am−1 ∈ I. Since IM ⊆ N and am−1 ∈ I, we
conclude that xm = (am, mam−1c) ∈ J .

Theorem 6.4. Let A be a ring, M be an R-module, and R = A(+)M . Suppose
that J = I(+)N is a proper ideal of R, where I is a proper ideal of A and N is
a submodule of M such that IM ⊆ N . Let 0 < n < m be integers. The following
statements are equivalent :

(1) J is an (m, n)-closed ideal of R.
(2) I is an (m, n)-closed ideal of A and whenever am ∈ I for some a ∈ A implies

nan−1M ⊆ N .

Proof. (1) ⇒ (2). Suppose that J is an (m, n)-closed ideal of R. Then it is clear
that I is an (m, n)-closed ideal of A. Assume that am ∈ I for some a ∈ A. Let
c ∈ M and x = (a, c). Since am ∈ I, we have xm ∈ R by Lemma 6.3. Since J

is an (m, n)-closed ideal of R, we conclude that xn = (an, nan−1c) ∈ R. Thus,
nan−1M ⊆ N .

(2) ⇒ (1). Suppose that I is an (m, n)-closed ideal of A and whenever am ∈ I

for some a ∈ A implies nan−1M ⊆ N . Let x = (a, c) ∈ R for some a ∈ A and c ∈ M

and suppose that xm = (am, mam−1c) ∈ J . Since am ∈ I and I is an (m, n)-closed
ideal of A, we conclude that an ∈ A and nan−1c ∈ N . Thus, xn = (an, nan−1c) ∈ J .
Hence J is an (m, n)-closed ideal of R.

Theorem 6.5. Let A be a ring, M be an R-module, m and n integers with 1 ≤
n < m, I be a proper ideal of A, and R = A(+)M . Suppose that char(A) |n. Then
the following statements are equivalent :

(1) J = I(+)N is an (m, n)-closed ideal of R for every submodule N of M where
IM ⊆ N .

(2) I is an (m, n)-closed ideal of A.

Proof. (1) ⇒ (2). It is clear by Theorem 6.4.
(2) ⇒ (1). Let N be a submodule of M such that IM ⊆ N . Since char(A) |n,

we conclude that whenever am ∈ I for some a ∈ A implies nan−1M = 0M ⊆ N ,
where 0m is the additive identity of M . Thus, J = I(+)N is an (m, n)-closed ideal
of R by Theorem 6.4.

Theorem 6.6. Let D be an integral domain, R = D(+)D, m and n integers with
1 ≤ n < m, and I = pkD, where p is a prime element of D and k is a positive
integer. Suppose that m > k and char(D) �= n. Then the following statements are
equivalent :

(1) J = I(+)piD is an (m, n)-closed ideal of R for some integer i ≥ 1.
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(2) One of the following three cases must hold :

(a) k < n < m and i ≤ k.
(b) n = k, and 1 ≤ i < k.
(c) n = i = k, and p | k · 1D (in D), where 1D is the identity of D.

Proof. (1) ⇒ (2). Suppose that J = I(+)piD is an (m, n)-closed ideal of R for
some integer i ≥ 1. Since J is an ideal of R, we conclude that I ⊆ piD. Hence i ≤ k.
Since J = I(+)piD is an (m, n)-closed ideal of R, we conclude that I is an (m, n)-
closed ideal of D and whenever am ∈ I for some a ∈ D implies nan−1D ⊆ piD

by Theorem 6.4. Since m > k, pm ∈ I and hence pn ∈ I and npn−1D ⊆ piD.
In particular, npn−1 ∈ piD. Since pn ∈ I, we conclude that n ≥ k. Suppose that
n = k. Then npn−1 = kpk−1 ∈ piD if and only if either 1 ≤ i < k or i = k and
p | k · 1D.

(2) ⇒ (1). In view of proof (1) ⇒ (2) above, one can easily verify that if (a)
or (b) or (c) holds, then I is an (m, n)-closed ideal of D and whenever am ∈ I

for some a ∈ D implies nan−1D ⊆ piD. Hence J is an (m, n)-closed ideal of R by
Theorem 6.4.

Definition 6.7. Let p be a prime element of an integral domain D. Suppose that
pw | d for some d ∈ D and a positive integer w but pw+1 � d. Then we write pw ‖ d.

Theorem 6.8. Let D be an integral domain, R = D(+)D, m and n integers with
1 ≤ n < m, and I = pkD, where p is a prime element of D and k is a positive
integer. Suppose that m < k and char(D) �= n. Let v = � k

m� and u = �k
v �. Then

the following statements are equivalent :

(1) J = I(+)piD is an (m, n)-closed ideal of R for some integer i ≥ 1.
(2) One of the following three cases must hold :

(a) u < n < m and i ≤ k.
(b) u = n, p � n · 1D (in D), and i ≤ v(n − 1) < k.
(c) u = n, pw ‖n · 1D (in D), and i ≤ min{v(n − 1) + w, k}.

Proof. (1) ⇒ (2). Suppose that J = I(+)piD is an (m, n)-closed ideal of R for
some integer i ≥ 1. Since J is an ideal of R, we conclude that I ⊆ piD. Hence i ≤ k.
It is clear that v = � k

m� is the smallest positive integer where (pv)m ∈ I. Also, it
is clear that u is the smallest positive integer where (pv)u ∈ I. Since J = I(+)piD

is an (m, n)-closed ideal of R and 1 ≤ n < m, we conclude that u ≤ n < m.
Since J = I(+)piD is an (m, n)-closed ideal of R, we conclude that I is an (m, n)-
closed ideal of D and whenever am ∈ I for some a ∈ D implies nan−1D ⊆ piD

by Theorem 6.4. Hence since (pv)m ∈ I, we conclude that n(pv)n−1 ∈ piD by
Theorem 6.4. If u < n < m, then u ≤ n − 1 and thus n(pv)n−1 ∈ pkD = I (note
that (pv)u ∈ I) and i ≤ k. Suppose that n = u and p � n · 1D (in D). Since u

is the smallest positive integer where (pv)u ∈ I and p � n · 1D, we conclude that
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v(n − 1) < k and n(pv)n−1 ∈ piD if and only if i ≤ v(n − 1) < k. Suppose that
u = n and pw ‖n · 1D (in D). Since i ≤ q, we conclude that n(pv)n−1 ∈ piD if and
only if i ≤ min{v(n − 1) + w, k}.

(2) ⇒ (1). In view of proof (1) ⇒ (2) above, one can easily verify that if (a)
or (b) or (c) holds, then I is an (m, n)-closed ideal of D and whenever am ∈ I

for some a ∈ D implies nan−1D ⊆ piD. Hence J is an (m, n)-closed ideal of R by
Theorem 6.4.

Let R be an integral domain, I = pkR, where p is a prime element of R and k

is a positive integer, and m and n be fixed positive integers with 1 ≤ n < m. The
authors in [3, Theorem 3.1] determined the set {k ∈ N | pkR is (m, n)-closed}. We
recall the following result.

Theorem 6.9 ([3, Theorem 3,1]). Let D be an integral domain, m and n integers
with 1 ≤ n < m, and I = pkD, where p is a prime element of D and k is a positive
integer. Then the following statements are equivalent :

(1) I is an (m, n)-closed ideal of D.
(2) If m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n − 1, then

k ∈ {1, . . . , n}. If m = n + c for an integer c with 1 ≤ c ≤ n − 1, then
k ∈ ⋃n

h=1{mi + h | i ∈ Z and 0 ≤ ic ≤ n − h}.
In view of Theorems 6.6, 6.8 and 6.9, we have the following result.

Theorem 6.10. Let D be an integral domain, R = D(+)D, m and n integers with
1 ≤ n < m, and I = pkD, where p is a prime element of D and k is a positive
integer. Suppose that char(D) �= n. Then the following statements are equivalent :

(1) J = I(+)piD is an (m, n)-closed ideal of R for some integer i ≥ 1.
(2) If m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n − 1, then

k ∈ {1, . . . , n} and one of the following three cases must hold :

(a) k < n < m and i ≤ k.
(b) n = k, and 1 ≤ i < k.
(c) n = i = k, and p | k · 1D (in D), where 1D is the identity of D.

If m = n + c for an integer c with 1 ≤ c ≤ n− 1, then k ∈ ⋃n
h=1{mi + h | i ∈ Z

and 0 ≤ ic ≤ n − h} and one of the following three cases must hold:
Let v = � k

m� and u = �k
v �. Then

(a) u < n < m and i ≤ k.
(b) u = n, p � n · 1D (in D), and i ≤ v(n − 1) < k.
(c) u = n, pw‖n · 1D (in D), and i ≤ min{v(n − 1) + w, k}.

Proof. (1) ⇒ (2). Suppose that J = I(+)piD is an (m, n)-closed ideal of R for
some integer i ≥ 1. Then I is an (m, n)-closed ideal of D by Theorem 6.4. Suppose
that m = bn+c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n−1. Then k ∈ {1, . . . , n}
by Theorem 6.9. Hence m > k. Thus we are done by Theorem 6.6. Suppose that
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m = n + c for an integer c with 1 ≤ c ≤ n − 1. Then k ∈ ⋃n
h=1{mi + h | i ∈ Z and

0 ≤ ic ≤ n−h} by Theorem 6.9. Thus, m < k. Hence we are done by Theorem 6.8.
(2) ⇒ (1). Suppose that k ∈ {1, . . . , n} and (a) or (b) or (c) holds. Since

m > k, we are done by Theorem 6.6. Suppose that m = n + c for an integer c with
1 ≤ c ≤ n − 1 and k ∈ ⋃n

h=1{mi + h | i ∈ Z and 0 ≤ ic ≤ n − h} and (a) or (b) or
(c) holds. Since m < k, we are done by Theorem 6.8.

In view of Theorems 6.1 and 6.9, we have the following result.

Theorem 6.11. Let D be an integral domain, I = pkD, where p is a prime element
of D and k is a positive integer, M be a D-module, R = D(+)M, J = I(+)N is a
proper ideal of R, where N is a submodule of M such that IM ⊆ N, and m and n

integers with 1 ≤ n < m. Then the following statements are equivalent :

(1) I is an (m, n)-closed ideal of D and J is an (m, n + 1)-closed ideal of R.
(2) If m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n − 1, then

k ∈ {1, . . . , n}. If m = n + c for an integer c with 1 ≤ c ≤ n − 1, then
k ∈ ⋃n

h=1{mi + h | i ∈ Z and 0 ≤ ic ≤ n − h}.

Proof. (1) ⇒ (2). Suppose that I is an (m, n)-closed ideal of D and J is an
(m, n + 1)-closed ideal of R. Since I is an (m, n)-closed ideal of D, we are done by
Theorem 6.9.

(2) ⇒ (1). By Theorem 6.9, I is an (m, n)-closed ideal of D. Hence J is an
(m, n + 1)-closed ideal of R by Theorem 6.1.

Theorem 6.12. Let A be an integral domain with quotient field K, M be a K-
vector space, and R = A(+)M . Then the following statements are equivalent :

(1) Every proper ideal of A is an (m, n)-closed ideal of A for some integers 1 ≤
n < m.

(2) Every proper ideal of R is an (m, n)-closed ideal of R for some integers 1 ≤
n < m.

Proof. (1) ⇒ (2). Suppose that every proper ideal of A is an (m, n)-closed ideal
of A for some integers 1 ≤ n < m. Let J be an ideal of R. Since M is a divisible
A-module, we have J = I(+)M for some proper ideal I of A or J = {0}(+)N
for some A-submodule N of M by ([1, Corollary 3.4]). Suppose that J = I(+)M
for some proper ideal I. Since I is an (m, n)-closed ideal of A for some integers
1 ≤ n < m, it is clear that J = I(+)M is an (m, n)-closed ideal of R. Suppose
that J = {0}(+)N for some A-submodule N of M . Since A is an integral domain,
we have J = {0}(+)N is an (m, 2)-closed ideal of R for every integer m ≥ 3.
Hence every proper ideal of R is an (m, n)-closed ideal of R for some integers
1 ≤ n < m.

(2) ⇒ (1). It is clear.
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