On n-absorbing ideals and (m, n)-closed ideals in trivial ring extensions of commutative rings

Ayman Badawi ${ }^{*, \ddagger}$, Mohammed Issoual ${ }^{\dagger, \S}$ and Najib Mahdou ${ }^{\dagger, \llbracket}$
*Department of Mathematics and Statistics
The American University of Sharjah, P. O. Box 26666
Sharjah, United Arab Emirates
${ }^{\dagger}$ Department of Mathematics
Faculty of Science and Technology
University S. M. Ben Abdellah, Fez 30000, Morocco
${ }^{\ddagger}$ abadawi@aus.edu
§issoual2@yahoo.fr
『mahdou@hotmail.com
Received 9 November 2017
Accepted 8 June 2018
Published 19 July 2018
Communicated by E. Gorla

Let R be a commutative ring with $1 \neq 0$. Recall that a proper ideal I of R is called a 2-absorbing ideal of R if $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. A more general concept than 2 -absorbing ideals is the concept of n-absorbing ideals. Let $n \geq 1$ be a positive integer. A proper ideal I of R is called an n-absorbing ideal of R if $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $a_{1}, a_{2} \cdots a_{n+1} \in I$, then there are n of the a_{i} 's whose product is in I. The concept of n-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of R is a 1-absorbing ideal of R). Let m and n be integers with $1 \leq n<m$. A proper ideal I of R is called an (m, n)-closed ideal of R if whenever $a^{m} \in I$ for some $a \in R$ implies $a^{n} \in I$. Let A be a commutative ring with $1 \neq 0$ and M be an A-module. In this paper, we study n-absorbing ideals and (m, n)-closed ideals in the trivial ring extension of A by M (or idealization of M over A) that is denoted by $A(+) M$.

Keywords: Prime ideal; radical ideal; 2-absorbing ideal; n-absorbing ideal; (m, n)-closed ideal; trivial extension; idealization of a ring.

Mathematics Subject Classification 2010: 13A15, 13F05, 13G05

1. Introduction

We assume throughout that all rings are commutative with $1 \neq 0$. Over the past several years, there has been considerable attention in the literature to n-absorbing ideals of commutative rings and their generalizations, for example see ($[2]-8,10,22$,

[^0]24-29, 31). We recall from [4] that a proper ideal I of R is called a 2-absorbing ideal of R if $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. A more general concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let $n \geq 1$ be a positive integer. A proper ideal I of R is called an n-absorbing ideal of R as in [2] if $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $a_{1}, a_{2} \cdots a_{n+1} \in I$, then there are n of the a_{i} 's whose product is in I. A proper ideal of R is called a strongly n-absorbing ideal of R as in [2] if whenever $I_{1} \cdots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R, then the product of some n of the $I_{j}^{\prime} \mathrm{s}$ is contained in I. The concept of n-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of R is a 1 -absorbing ideal of R). Let m and n be the positive integers with $1 \leq n<m$. We recall from [3] that a proper ideal I of R is called an (m, n)-closed ideal of R if whenever $a^{m} \in I$ for some $a \in I$ implies $a^{n} \in I$.

Let A be a commutative ring and M be an A-module. The trivial ring extension of A by M (or the idealization of M over A) is the ring $R=A(+) M$ whose underlying group is $A \times M$ with multiplication given by $(a, b)(c, d)=(a c, a d+$ $b c$) (for example see [23]). In this paper, we study n-absorbing ideals, strongly n-absorbing ideals, and (m, n)-closed ideals in the ring $R=A(+) M$. We start by recalling some background materials. We say A is a quasilocal ring if A has exactly one maximal ideal. If I is a primary ideal of a ring A with $\sqrt{I}=P$ (a prime ideal of A), then we say that I is a P-primary ideal of A. A prime ideal P of a ring A is called divided if $P \subset x$ for every $x \in A \backslash P$. Suppose that I is a n-absorbing ideal of a ring A for some integer $n \geq 1$. Then, as in [2], we put $w_{A}(I)=\min \{n \in \mathbb{N} \mid I$ is n-absorbing ideal of A $\}$, and $w_{A}^{*}(I)=\min \{n \in$ $\mathbb{N} \mid I$ is a strongly n-absorbing ideal of A $\}$. Let A be a commutative ring and M be an A-module. Then a submodule N of M is called a P-primary submodule of M for some prime ideal P of A if $(N: M)=\{x \in A \mid x M \subseteq N\}$ is a primary ideal of A with $\sqrt{(N: M)}=\left\{a \in A \mid a^{n} M \subseteq N\right.$ for some integer $\left.n \geq 1\right\}=P$.

Let $n \geq 1$ be an integer and I be a proper ideal of A. Anderson and Badawi in [2] (also see [10]) proposed the following three conjectures:
(1) Conjecture one: I is an n-absorbing ideal of A if and only if I is a strongly n-absorbing ideal of A.
(2) Conjecture two: If I is an n-absorbing ideal of A, then $(\sqrt{I})^{n} \subseteq I$. An affirmative answer to this conjecture is given in 15 .
(3) Conjecture three: If I is an n-absorbing ideal of A, then $I[X]$ is an n-absorbing ideal of $A[X]$.

In this paper, we study the validity of the above three conjectures in the ring $R=A(+) M$.

2. n-Absorbing Ideals in Trivial Ring Extensions

We recall [1, Corollary 3.4] that if A is an integral domain and M is a divisible A-module, then every ideal of $A(+) M$ has the form $I(+) M$ for some proper ideal I of A or $0(+) N$ for some submodule N of M.

In the following result, we collect some trivial facts about n-absorbing ideals and (m, n)-closed ideals in $R=A(+) M$ and hence we omit the proof.

Theorem 2.1. Let A be a commutative ring, I be a proper ideal of A, M be an
A-module, and $R=A(+) M$. Then
(1) I is an n-absorbing ideal of A if and only if $I(+) M$ is an n-absorbing ideal of R.
(2) I is a strongly n-absorbing ideal of A if and only if If $I(+) M$ is a strongly n-absorbing of R.
(3) I is an (m, n)-closed ideal of A if and only if $I(+) M$ is an (m, n)-closed ideal of R.

Example 2.2. Let A be a field and M be an A-vector space. It is clear that $R=$ $A(+) M$ is a quasilocal ring with the maximal is $M=\{0\}(+) M$. Since $M^{2}=\{0\}$, we conclude that every ideal of R is a 2 -absorbing ideal of R and hence a strongly 2-absorbing ideal of R by [4, Theorem 2.13]. Thus every ideal of R is a strongly n-absorbing ideal of R for every $n \geq 2$.

We recall the following results.
Theorem 2.3. (1) (15) If I is an n-absorbing ideal of a ring A for some integer $n \geq 1$, then $(\sqrt{I})^{n} \subseteq I$.
(2) ([2, Theorem 3.1]) Let P be a prime ideal of a ring A, and let I be a P-primary ideal of A such that $P^{n} \subseteq I$ for some positive integer n (for example, if A is a Noetherian ring). Then I is an n-absorbing ideal of A.
(3) (2, Theorem 6.6]) Let P be a prime ideal of a ring A, I be a P-primary ideal of A, and $n \geq 1$ be an integer. Then I is a strongly n-absorbing ideal of A if and only if $P^{n} \subseteq I$ and I is an n-absorbing ideal of R.
(4) ([2, Theorem 3.2]) Let P be a divided prime ideal of A, and let I be an n-absorbing ideal of A with $\sqrt{I}=P$. Then I is a P-primary ideal of A.
(5) ([2, Theorem 3.3]) Assume that $\sqrt{\{0\}} \subset P$ are divided prime ideals of A and $n \geq 1$ be an integer. Then P^{n} is a P-primary ideal of A, and thus P^{n} is an n-absorbing ideal of A.

In view of Theorem [2.3, we have the following result.
Corollary 2.4. (1) Let P be a prime ideal of a ring $A, n \geq 1$ be an integer, and let I be a P-primary ideal of A. Then I is an n-absorbing ideal of A if and only if $P^{n} \subseteq I$ if and only if I is a strongly n-absorbing ideal of A.
(2) Let P be a divided prime ideal of A, and let I be a proper ideal of A with $\sqrt{I}=P$. Then I is an n-absorbing ideal of A if and only if I is a P-primary ideal of A and $P^{n} \subseteq I$ if and only if I is a strongly n-absorbing ideal of A.
(3) Assume that $\sqrt{\{0\}} \subset P$ are divided prime ideals of A and $n \geq 1$ be an integer. Then P^{n} is a strongly n-absorbing ideal of A.

Proof. (1) By Theorem 2.3(1), (2), (3)], the claim follows.
(2) By Theorem[2.3(4), (1), (2), (3)], the claim follows.
(3) By Theorem[2.3 (5), (2), (3)], the claim follows.

Theorem 2.5. Let A be a commutative ring, M be an A-module, $R=A(+) M$, $n \geq 1$ be an integer, I be a proper ideal of A, and N be a submodule of M such that $I M \subseteq N$. Then $:$
(1) If $I(+) N$ is an n-absorbing ideal of R, then I is an n-absorbing ideal of A.
(2) Let P be a prime ideal of A, I be a P-primary ideal of A, and N be a P-primary submodule of M. Then I is an n-absorbing ideal of A if and only if $I(+) N$ is an n-absorbing ideal of R.
(3) Let P be a prime ideal of A, I be a P-primary ideal of A, and N be a P-primary submodule of M. Then $I(+) N$ is an n-absorbing ideal of R if and only if $I(+) N$ is a strongly n-absorbing ideal of R.
(4) Let P be a divided prime ideal of A, I be an n-absorbing ideal of A with $\sqrt{I}=P$, and N be a P-primary submodule of M. Then $I(+) N$ is a strongly n-absorbing ideal of R.
(5) Assume that $\sqrt{\{0\}} \subset P$ are divided prime ideals of A such that $P^{n} M \subseteq N$. If N is a P-primary submodule of M, then $P^{n}(+) N$ is a strongly n-absorbing ideal of R.
(6) Assume that A is a Prüfer domain and let $J=I(+) M$. Then $J=I(+) M$ is an n-absorbing ideal of R if and only if J is a strongly n-absorbing ideal of R. Moreover $w(J)=w^{*}(J)$.

Proof. (1) No comments.
(2) Since I is a P-primary ideal of A and N is a P-primary submodule of M, we conclude that $I(+) N$ is a $P(+) M$-primary ideal of R by 1, Theorem 3.6]. Suppose that I is an n-absorbing ideal of A. Then $(\sqrt{I})^{n}=P^{n} \subseteq I$ by Theorem 2.3(1). Hence $(\sqrt{I(+) N})^{n}=(P(+) M)^{n} \subseteq P^{n}(+) N \subseteq I(+) N$. Thus, $I(+) N$ is an n-absorbing ideal of R by Corollary [2.4(1). Conversely, suppose that $I(+) N$ is an n-absorbing ideal of R. Then $(\sqrt{I(+) N})^{n}=(P(+) M)^{n} \subseteq I(+) N$ by Theorem 2.3(1). In particular, $P^{n} \subseteq I$. Since I is a P-primary ideal of A and $P^{n} \subseteq P$, we conclude that I is an n-absorbing ideal of A by Corollary 2.4(1).
(3) Since $I(+) N$ is a $P(+) M$-primary ideal of R by [1, Theorem 3.6] and $(\sqrt{I(+) N})^{n}=(P(+) M)^{n} \subseteq I(+) N$ by Theorem 2.3(1), the claim follows by Theorem 2.3(3).
(4) By Corollary 2.4 (2), we conclude that I is a P-primary ideal of A. Hence we are done by (2) and (3).
(5) By Theorem 2.3 we conclude that P^{n} is a P-primary ideal of A and hence an n-absorbing ideal of A. Thus we are done by (2) and (3).
(6) Suppose that $J=I(+) M$ is an n-absorbing ideal of R. Then I is an n-absorbing ideal of A. Since A is a Prüfer domain, we conclude that I is a strongly
n-absorbing ideal of A by [2, Corollary 6.9]. Hence $J=I(+) M$ is s strongly n-absorbing ideal of R. The converse is clear. It is clear that $w(J)=w^{*}(J)$.

3. Conjecture One in Trivial Ring Extension

Let $n \geq 1$ be an integer and I be a proper ideal of a ring A. Anderson and Badawi in [2] (also see [10]) proposed the following conjecture.

Conjecture one: I is an n-absorbing ideal of A if and only if I is a strongly n-absorbing ideal of A.

Laradji in 27] proved that conjecture one holds in some rings that satisfy certain conditions. In particular, he proved that Conjecture three implies Conjecture one. We have the following lemma.

Lemma 3.1. Let A be an integral domain with quotient field K, M be a K-vector space, F be a K-subspace of M, and $R=A(+) M$. Then $J=\{0\}(+) F$ is a strongly 2 -absorbing ideal of R, and thus J is a strongly n-absorbing ideal of R for every $n \geq 2$.

Proof. First, we show that J is a 2-absorbing ideal of R. Let $x_{i}=\left(a_{i}, e_{i}\right) \in R$, where $1 \leq i \leq 3$. Suppose that $x_{1} x_{2} x_{3} \in\{0\}(+) F$. Since A is an integral domain, we may assume that $a_{3}=0$. Suppose that $a_{1} a_{2}=0$. Then $x_{1} x_{3} \in J$ or $x_{2} x_{3} \in J$. Suppose that $a_{1} a_{2} \neq 0$. Then $x_{1} x_{2} x_{3}=\left(0, a_{1} a_{2} e_{3}\right)$. Since F is a K-subspace of M, we conclude that $a_{2}^{-1} a_{1}^{-1}\left(a_{1} a_{2} e_{3}\right)=e_{3} \in F$. Hence $x_{3}=\left(0, e_{3}\right) \in J$, and thus $x_{1} x_{3} \in J$. Hence J is a 2 -absorbing ideal of R. Thus, J is a strongly 2 -absorbing ideal of R by [4. Theorem 2.13], and hence J is a strongly n-absorbing ideal of R for every $n \geq 2$.

Theorem 3.2. Let A be an integral domain with quotient field K, M be a K-vector space, F be an A-submodule of M, and $R=A(+) M$. Then $\{0\}(+) F$ is an n-absorbing ideal of R for some $n \geq 2$ if and only if F is a K-subspace of M.

Proof. Suppose that $J=\{0\}(+) F$ is an n-absorbing ideal of R for some $n \geq 2$. Let a be a nonzero element of A and $f \in F$. We show $\frac{1}{a} f \in F$. Let $x=(a, 0), y=$ $\left(0, \frac{f}{a^{n}}\right) \in R$. Then $x^{n} y=(0, f) \in J$. Since $a \neq 0$ and J is an n-absorbing ideal of R, we conclude that $x^{n-1} y=\left(0, \frac{f}{a}\right) \in J$. Thus, $\frac{1}{a} f \in F$. Now let $h \in K$ and $v \in F$. Then $h=\frac{b}{c} \in K$ for some $b, c \in A$ with $c \neq 0$. Since $\frac{1}{c} v \in F$ and F is an A-submodule of M, we conclude that $h v=\frac{b}{c} v \in F$. Thus, F is a K-subspace of M. The converse is clear by Lemma 3.1.

Corollary 3.3. Let A be an integral domain that is not a field with quotient field K, and $R=A(+) K$. Then $J=\{0\}(+) A$ is not an n-absorbing ideal of R for every $n \geq 1$.

Proof. Since A is not a field, we conclude that A is not a K-subspace of K. Hence we are done by Theorem 3.2,

Theorem 3.4. Let A be an integral domain with quotient field K, M be a K-vector space, and $R=A(+) M$. Then Conjecture one holds in R if and only if Conjecture one holds in A.

Proof. First, observe that M is a divisible A-module. Hence every ideal of $R=$ $A(+) M$ has the form $I(+) M$ for some proper ideal I of A or $0(+) N$ for some submodule N of M by [1, Corollary 3.4].

Suppose that Conjecture one holds in R. Let I be a proper n-absorbing ideal of A for some integer $n \geq 1$. Then $J=I(+) M$ is a n-absorbing ideal of $R=A(+) M$, and hence a strongly n-absorbing ideal R by hypothesis. Thus, I is a strongly n-absorbing ideal of A by Theorem [2.1(2).

Conversely, suppose that Conjecture one holds in A. Let J be a proper n-absorbing ideal of $R=A(+) M$ for some $n \geq 1$. Hence J is the form $I(+) M$ where I is a proper ideal of A or $0(+) F$ where F is a K-subspace of M.

Case 1. $J=I(+) M$, where I is a proper ideal of A. Since J is an n-absorbing ideal of R, we conclude that I is an n-absorbing ideal of A by Theorem [2.1(1), and hence I is a strongly n-absorbing ideal of A by hypothesis. Thus, $J=I(+) M$ is a strongly n-absorbing ideal of $R=A(+) M$ by Theorem 2.1(2).
Case 2. $J=\{0\}(+) F$, where F is an A-submodule of M. If $n=1$, then $F=M$ and we are done. Hence assume that $n \geq 2$. Since J is an n-absorbing ideal of R, we conclude that F is a K-subspace of M by Theorem 3.2 Hence J is a strongly n-absorbing ideal of R for every $n \geq 2$ by Lemma 3.1. Thus, Conjecture one holds in $R=A(+) M$.

Corollary 3.5. Let A be a Prüfer domain with quotient field K, M be K-vector space, and $R=D(+) M$. Then Conjecture one holds in R.

Proof. Since A is a Prüfer domain, Conjecture one holds in A by [2, Corollary 6.9]. Thus Conjecture one holds in R by Theorem 3.4.

We recall the following result.
Theorem 3.6 ([2, Corollary 6.8]). Let R be a Noetherian ring. Then every proper ideal of R is a strongly n-absorbing ideal of R for some positive integer n.

Theorem 3.7. Let A be a Noetherian ring, M be an A-module, $R=A(+) M$, and I be a proper ideal of A. Then $J=I(+) M$ is a strongly n-absorbing ideal of R for some positive integer n.

Proof. Since I is a strongly n-absorbing ideal of A for some positive integer n by Theorem [3.6, we conclude that $J=I(+) M$ is a strongly n-absorbing ideal of R.

Theorem 3.8. Let A be a Noetherian ring, M be a finitely generated A-module, and $R=A(+) M$. Then every ideal of R is a strongly n-absorbing ideal of R for some positive integer n.

Proof. Since A be a Noetherian ring and M is a finitely generated A-module, we conclude that R is a Noetherian ring by [1 Theorem 4.8]. Hence the claim follows from Theorem 3.6

Question 1. In view of Theorem 3.6 El Amin El Kaidi asked the following question: Let A be a ring and assume that every ideal of A is an n-absorbing ideal of R for some integer $n \geq 1$. Does it imply that A is a Noetherian ring?

The following example gives a negative answer to the above question.
Example 3.9. Let $A \subset K$ be fields such that K is not a finitely generated A-module (for example, let $A=\mathbb{Q}$ and $K=\mathbb{R}$) and $R=A(+) K$. Since R is a quasilocal ring with maximal ideal $M=\{0\}(+) K$ and $M^{2}=\{(0,0)\}$, we conclude that every ideal of R a 2-absorbing ideal of R (and hence every ideal of R is a strongly n-absorbing ideal of R for every $n \geq 2$ by 4, Theorem 2.13]). Since K is not a finitely generated A-module, we conclude that $\{0\}(+) K$ is not a finitely generated of R. Thus R is not a Noetherian ring.

Remark 3.10. Let R be a ring and n a positive integer such that every proper ideal of R is an n-absorbing ideal of R. Then by [2, Theorem 5.9], we have $\operatorname{dim}(R)=0$ and R has at most n maximal ideals.

We have the following result.
Theorem 3.11. Let A be an integral domain with quotient field K, M be a finite dimensional vector space over K, and $R=A(+) M$. Then every proper ideal of R is an n-absorbing ideal of R for some $n \geq 1$ if and only if $A=K$.

Proof. Suppose that $A=K$. Since M is a finite dimensional vector space over K, we conclude that R a Noetherian ring by [1] Theorem 4.8]. Hence every proper ideal of R is an n-absorbing ideal of R for some $n \geq 1$ by Theorem 3.6 Conversely, suppose that every proper ideal of R is an n-absorbing ideal of R for some $n \geq 1$. Since M is a finite dimensional vector space over K, we may assume that $M=$ $K \times \cdots \times K\left(m\right.$ times, where $\left.m=\operatorname{dim}_{K}(M)<\infty\right)$. Hence $N=A \times \cdots \times A$ is a an A-submodule of M and $J=\{0\} \times N$ is a 2 -absorbing ideal of R. Since $J=\{0\} \times N$ is a 2 -absorbing ideal of R, we conclude that N is a K-subspace of M by Theorem 3.2 Thus, $A=K$.

In light of Theorems 3.6 and 3.11 we have the following result.
Corollary 3.12. Let A be an integral domain with quotient field K, M be a finite dimensional vector space over K, and $R=A(+) M$. Then the following statements
are equivalent.
(1) Every proper ideal of R is a strongly n-absorbing ideal of R for some $n \geq 1$.
(2) Every proper ideal of R is an n-absorbing ideal of R for some $n \geq 1$.
(3) $A=K$.
(4) A is a Noetherian ring.
(5) R is a Noetherian ring.

Theorem 3.13. Let A be a Noetherian domain with quotient field K, M be a K-vector space, and $R=A(+) M$. Then a proper ideal J of R is an n-absorbing ideal of R for some $n \geq 1$ if and only if J is a strongly m-absorbing ideal of R for some $m \geq 1$.

Proof. If $n=1$ or $m=1$. Then J is a prime ideal of R, and hence the claim is clear. Let J be a proper ideal of R. Since M is a divisible A-module, we conclude that $J=I(+) M$ for some proper ideal I of A or $J=\{0\}(+) F$ for some A-submodule F of M by [1, Corollary 3.4]. Suppose that J is n-absorbing ideal of R for some $n \geq 2$. Assume that $J=I(+) M$ for some proper ideal I of A. Since I is a strongly m-absorbing ideal of A for some positive integer m by Theorem 3.6 we conclude that $J=I(+) M$ is a strongly m-absorbing ideal of R. Suppose that $J=\{0\}(+) F$ for some A-submodule F of M. Then F is a K-subspace of M by Theorem 3.2., Thus J is a strongly k-absorbing ideal of R for every integer $k \geq 2$ by Lemma 3.1. The converse is clear.

4. Conjecture Three in Trivial Ring Extension

Let A be a commutative ring, and M an A-module, let $R=A(+) M$, we know $(A(+) M)[X]$ is naturally isomorphic to $A[X](+) M[X]$. If I is a ideal of A, then $(I(+) M)[X]$ is naturally isomorphic to $I[X](+) M[X]$.

We recall the following result.
Theorem 4.1 ($[2$, Theorem 4.15]). Let I be a proper ideal of a ring A. Then $I[X]$ is a 2-absorbing ideal of $R[X]$ if and only if I is a 2 -absorbing ideal of R.

Theorem 4.2. Let A be an integral domain with quotient field K, M be a K-vector space, and $R=A(+) M$. Then Conjecture three holds in R if and only if Conjecture three holds in A.

Proof. Suppose the Conjecture three holds in A. Let J be a proper n-absorbing ideal of R for some $n \geq 1$. Hence $J=I(+) M$ for some proper ideal I of A or $J=\{0\}(+) F$ for some K-subspace F of M by [1, Corollary 3.4] and Theorem 3.2.

Case 1. Suppose that $J=I(+) M$ for some proper ideal I of A. Then I is an n-absorbing ideal of A. Thus $I[X]$ is an n-absorbing ideal of $A[X]$ by hypothesis. Hence $w_{A}(I)=w_{A[X]}(I[X])$. Since $J[X]$ is isomorphic to $I[X](+) M[X]$,
we conclude that $J[X]$ is an n-absorbing ideal of $R[X]$. Since $w_{R[X]}(J[X])=$ $w_{A[X](+) M[X]}(I[X](+) M[X])=w_{A[X]}(I[X])=w_{A}(I)$. Hence $w_{R[X]}(J[X])=$ $w_{R}(J)$.

Case 2. Suppose that $J=0(+) F$ for some K-subspace F of M.
Since J is a 2-absorbing ideal of R, we conclude that $J[X]$ is a 2-absorbing absorbing ideal of $R[X]$ by Theorem 4.1 Hence Conjecture three holds in R.

Conversely, suppose that Conjecture three holds in R. Let I be an n-absorbing ideal of A. Then $I(+) M$ is n-absorbing ideal of R. Hence $(I(+) M)[X]$ is n-absorbing ideal of $R[X]$ by hypothesis. Since $(I(+) M)[X] \cong I[X](+) M[X]$, we conclude that $I[X]$ is an n-absorbing ideal of $A[X]$.

Laradji 27, Corollary 2.11] showed that Conjecture three holds in arithmetical rings. Since a Prüfer domain is both arithmetical and Gaussian ring, the following result is an immediate consequence of [27] Corollary 2.11] and [31 Theorem 2.6].

Lemma 4.3 ([27, Corollary 2.11] and [31, Theorem 2.6]). Let A be a Prüfer domain and I be a proper n-absorbing ideal of A for some integer $n \geq 1$. Then $I[X]$ is an n-absorbing ideal of $A[X]$.

In the following result, we construct rings with zero-divisors that satisfy Conjecture three but they do not need be arithmetical rings.

Theorem 4.4. Let A be a Prüfer domain with quotient field K, M be K-vector space, n be a positive integer, and J be a proper ideal of $R=A(+) M$ (note that if $M=K[X]$, then R is not an arithmetical ring by 9, Theorem 2.1(2)]). If J is an n-absorbing ideal of R, then $J[X]$ is an n-absorbing ideal of $R[X]$ and $w_{R}(J)=$ $w_{R[X]}(J[X])$.

Proof. Since A is a Prüfer domain, Conjecture three holds in A by Lemma 4.3 Thus Conjecture three holds in R by Theorem 4.2 Thus, If J is an n-absorbing ideal of R, then $J[X]$ is an n-absorbing ideal of $R[X]$ and $w_{R}(J)=w_{R[X]}(J[X])$.

In the following example, we construct a non-arithmetical ring that satisfies Conjecture three.

Example 4.5. Let A be a Prüfer domain with quotient field $K, M=K[X]$, and $R=A(+) M$. Then:
(1) R satisfies Conjecture three by Theorem 4.4
(2) R is a non-arithmetical ring by [9, Theorem 2.1(2)].

Remark 4.6. Let I be a proper ideal of a ring A and $n \geq 1$. It is shown [2] Theorem 6.1] that if I is a strongly n-absorbing ideal of A, then $(\sqrt{I})^{n} \subseteq I$. It is shown [27, Proposition 2.9(1)] that if $I[X]$ is an n-absorbing ideal of $A[X]$, then I is a strongly n-absorbing ideal of A. It is shown [27] Corollary 2.11] that if I is an
n-absorbing ideal of an arithmetical ring A, then $I[X]$ is an n-absorbing ideal of $A[X]$. Hence if A is an arithmetical ring, then all three Conjectures hold in A.

In the following result, we construct rings with zero-divisors that satisfy all three conjectures but they do not need be arithmetical rings.

Theorem 4.7. Let A be a Prüfer domain with quotient field K, M be K-vector space, n be a positive integer, and $R=A(+) M$ (note that if $M=K[X]$, then R is not an arithmetical ring by [9, Theorem 2.1(2)]). Suppose that J is an n-absorbing ideal of R. Then the following statements hold:
(1) J is a strongly n-absorbing ideal of R.
(2) $J[X]$ is an n-absorbing ideal of R.
(3) $(\sqrt{J})^{n} \subseteq J$.

Proof. (1) It is clear by Corollary 3.5
(2) It is clear by Theorem 4.4
(3) It is clear by (15.

5. Conjecture One in u-Rings

We recall from [30] that commutative ring R is called a u-ring if whenever an ideal I of R is contained in a finite union of ideals of R, then I is contained in at least one of those ideals. It is known that every Bezout ring is a u-ring and every Prüfer domain is a u-domain. In [31, Theorem 2.4], Smach and Hizem showed that Conjecture one holds in u-rings. In this section, we propose a proof of this result that is different from that in [31, Theorem 2.4]. We need the following notation. Let R be a commutative ring. If $x_{1}, \ldots, x_{n} \in R$, then $x_{1}, \ldots, \widehat{x_{k}} \cdots x_{n}$ denotes the product $x_{1} \cdots x_{n}$ that omits x_{k}. Similarly, if I_{1}, \ldots, I_{n+1} are ideals of R, then $I_{1} \cdots \widehat{I_{k}} \cdots I_{n+1}$ denotes the product I_{1}, \ldots, I_{n+1} that omits I_{k}. We start with the following lemmas.

Lemma 5.1. Let R be a commutative ring. Suppose there are ideals I_{1}, \ldots, I_{n+1} of R such that $I_{1} \cdots . I_{n+1}=\{0\}$ and no product of n of the I_{j} 's is equal to $\{0\}$. Then there are finitely generated ideals J_{1}, \ldots, J_{n+1} of R such that $J_{1} \cdots J_{n+1}=\{0\}$ and no product of n of the J_{i} 's is equal to $\{0\}$.

Proof. Suppose there are ideals I_{1}, \ldots, I_{n+1} of R such that $I_{1} \cdots . I_{n+1}=\{0\}$ and no product of n of the I_{j} 's is equal to $\{0\}$.

Let $j \in\{1, \ldots, n+1\}$. Since $\prod_{i=1, i \neq j}^{n+1} I_{i} \neq\{0\}$ for all $i \neq j$, there exist $a_{i, j} \in I_{i}$ such that $\prod_{i=1, i \neq j}^{n+1} a_{i, j} \neq\{0\}$. Let $J_{j}=\left(a_{1, j}, \ldots, \widehat{a_{j, j}}, \ldots, a_{n+1, j}\right)$ the ideal generated by $\left\{a_{i, j}, i \neq j, i=1, \ldots, n+1\right\}$. Since $J_{j} \subseteq I_{j}$, we have $J_{1} \cdots J_{n+1}=\{0\}$. Thus, $\prod_{i=1, i \neq j}^{n+1} J_{i} \neq\{0\}$, for every $j \in\{1, \ldots, n+1\}$, as desired.

Lemma 5.2. Suppose that in any ring $\{0\}$ is a strongly n-absorbing ideal if and only if $\{0\}$ is an n-absorbing ideal. Then every n-absorbing ideal in an arbitrary ring R is a strongly n-absorbing ideal of R.

Proof. Suppose I is n-absorbing ideal in a ring A and let the canonical homomorphism $f: R \rightarrow R / I$. Then $\{0\}$ is an n-absorbing ideal of $A^{\prime}=A / I$ by [2, Theorem 4.2] and thus $\{0\}$ is a strongly n-absorbing ideal of A^{\prime}. Let I_{1}, \ldots, I_{n+1} are ideals of A such that $\prod_{i=1}^{n+1} I_{i} \subset I$, then $\prod_{i=1}^{n+1} f\left(I_{i}\right)=\{0\}$. Since $\{0\}$ is a strongly n-absorbing ideal of A^{\prime}, there exist $j \in\{1, \ldots, n+1\}$ such that $\prod_{i=1, i \neq j}^{n+1} f\left(I_{i}\right)=\{0\}$ and so $\prod_{i=1, i \neq j}^{n+1} I_{i} \subset I$. Therefore, I is a strongly n-absorbing ideal of A.

Lemma 5.3. Let R be a commutative u-ring such that $\{0\}$ is an n-absorbing ideal. Then $\{0\}$ is a strongly n-absorbing of R.

Proof. Let I_{1}, \ldots, I_{n+1} be ideals of R such that $I_{1} \cdots I_{n+1}=\{0\}$. Assume that there is no product of n ideals of the I_{j} 's equals to zero. By Lemma 5.2, there are finitely generated ideals J_{1}, \ldots, J_{n+1} of R such that $J_{1} \cdots J_{n+1}=\{0\}$ and no product of n of the J_{i} 's equals to $\{0\}$. Let n_{j} be the minimal number of generators for J_{j}, and $\varphi\left(J_{1}, \ldots, J_{n+1}\right)=\sum_{i=1}^{n+1} n_{j}$. It is clear that $\varphi\left(J_{1}, \ldots, J_{n+1}\right) \in\{n+1, \ldots$, $n(n+1)\}$.

We will show by induction that there exists a product of n ideals of the J_{i} 's equals to zero, which is the desired contradiction.

Suppose that $\varphi\left(J_{1}, \ldots, J_{n+1}\right)=\sum_{i=1}^{n+1} n_{j}=n+1$. Then for every $j=1, \ldots$, $n+1$, there exists an element $a_{j} \in R$ such that $J_{j}=R a_{j}$. Hence, $J_{1} \cdots . J_{n+1}=\{0\}$. Since $\{0\}$ is an n-absorbing ideal of R, there exists one product $a_{1} \cdots \widehat{a_{k}} \cdots a_{n+1}=$ $\{0\}$ and hence $J_{1} \cdots \widehat{J_{k}} \cdots J_{n+1}=\{0\}$.

Now, assume that whenever $L_{1} L_{2} \cdots L_{n+1}=\{0\}$ for some ideals L_{1}, \ldots, L_{n+1} of R and $\varphi\left(L_{1}, \ldots, L_{n+1}\right)<\varphi\left(J_{1}, \ldots, J_{n+1}\right)$, there exists a $k \in\{1, \ldots, n+1\}$ such that $L_{1} \cdots \widehat{L_{k}} \cdots L_{n+1}=\{0\}$. Since $\sum_{j=1}^{n+1} n_{j}>n+1$, without loss of generality, suppose $n_{1}>1$, and let $a_{1} \in J_{1}$. Then $a_{1} J_{2} \cdots J_{n+1}=\{0\}$. Let $L_{1}=R a_{1}$, and for $j \geq 2$, let $L_{j}=J_{j}$. Hence $L_{1} \cdots L_{n+1}=\{0\}$ and $\varphi\left(L_{1}, \ldots, L_{n+1}\right)=1+$ $\sum_{k=2}^{n+1} n_{k}<\varphi\left(J_{1}, \ldots, J_{n+1}\right)$. By induction there exists some $j \in\{2, \ldots, n+1\}$ such that $L_{1} J_{2} \cdots \widehat{J}_{j} \cdots J_{n+1}=\{0\}$. Since $J_{2} \cdots . J_{n+1} \neq\{0\}$ by hypothesis, we have $a_{1} \in \operatorname{ann}\left(Q_{j}\right)$, where $Q_{j}=J_{2} \cdots \widehat{J}_{j} \cdots J_{n+1}$. Thus, $J_{1} \subset \bigcup_{i=1}^{n+1} \operatorname{ann}\left(Q_{j}\right)$. Since R is a u-ring, there exists $j \in\{1, \ldots, n+1\}$ such that $J_{1} \subset$ ann $\left(Q_{j}\right)$. Thus, $J_{1} \ldots \widehat{J}_{j} \cdots J_{n+1}=\{0\}$, a contradiction. Therefore, there exists $j \in\{1, \ldots, n+$ $1\}$ such that $I_{1} \cdots \widehat{I}_{j} \cdots I_{n+1}$ equals to zero. Hence $\{0\}$ is a strongly n-absorbing of R.

Theorem 5.4. Let R be a commutative u-ring. Then R satisfies Conjecture one, that is every n-absorbing ideal of R is a strongly n-absorbing ideal of R.

Proof. Let R be a commutative u-ring. Suppose that I is a proper n-absorbing ideal of R. Then the quotient ring R / I is a u-ring by [30] Proposition 1.3] and $\{0\}$ is an n-absorbing ideal of R / I. Therefore, $\{0\}$ is a strongly n-absorbing of R / I by Lemma 5.3] Hence I is a strongly n-absorbing ideal of R.

We recall from [30] that a ring A is called a um-ring if whenever an R-module equal to a finite union of submodules must be equal to one of them.

Remark 5.5. Let R be a commutative ring and assume that R contains an infinite set S such that $x-y$ is a unit for all $x \neq y$ in S. Then R is a um-ring by [30, Proposition 1.7]. It is shown [30, Theorem 2.3] that a ring R is a um-ring if and only if R / M is infinite for every maximal ideal M of R. It is shown [30, Theorem 2.6] that a ring R is an u-ring if and only if R / M is infinite or R_{M} is a Bezout ring for every maximal ideal M of R. Hence in view of [30, Theorem 2.3] and [30] Theorem 2.6], we conclude that every $u m$-ring is a u-ring. The converse is not true, for let $R=\mathbb{Z}$. Then R is a u-ring. Since R / M is finite for every maximal ideal M of R, we conclude that R is not a um-ring.

In view of Remark 5.5, we have the following result.
Theorem 5.6. Let R be a um-ring. Then R is a u-ring.
The proof of the following result is similar to the proof of [30, Proposition 1.7].
Theorem 5.7. Let R be a commutative ring with $1 \neq 0, n$ be a positive integer, and I be a proper ideal of R. Suppose that R contains an infinite set S such that $x-y$ is a unit for all $x \neq y$ in S. Then R is a u-ring, and hence I is a strongly n-absorbing of R if and only if I is an n-absorbing ideal of R.

Proof. Suppose that R contains an infinite set S such that $x-y$ is a unit for all $x \neq y$ in S. We show that R is a u-ring. Deny. Let I be an ideal of R and $p \geq 1$ be an integer such that $I \subset \bigcup_{i=1}^{p} I_{i}$, and suppose that for every $i \in\{1, \ldots, p\}$, we have $I \nsubseteq I_{i}$. We may assume that for each $i \in\{1, \ldots, p\}$, we have $I \nsubseteq \bigcup_{j \neq i} I_{j}$. Hence for each $1 \leq i \leq 2$, there exists $a_{i} \in I$ such that $a_{i} \notin \bigcup_{j \neq i} I_{j}$. Consider the set $H=\left\{a_{1}+x a_{2} \mid x \in S\right\}$. Then for every $x \in S$, we have $a_{1}+x a_{2} \in I$ and $a_{1}+x a_{2} \notin I_{2}$. Since $H \subseteq I$ and $H \cap I_{2}=\emptyset$, we have $H \subset \bigcup_{j \neq 2} I_{j}$. Since H is infinite, there exist $x_{1} \neq x_{2}$ in S such that $a_{1}+x_{1} a_{2}$ and $a_{1}+x_{2} a_{2} \in I_{i}$ for some $i \neq 2$. Hence $\left(x_{1}-x_{2}\right) a_{2} \in I_{i}$, and thus $a_{2} \in I_{i}$, which is a contradiction. Thus, R is a u-ring.

Remark 5.8. One can give an alternative proof of Theorem 5.7. Note that since R contains an infinite set S such that $x-y$ is a unit for all $x \neq y$ in S, we conclude that R is a um-ring by [30, Proposition 1.7]. Hence R is a u-ring by Theorem 5.6

Theorem 5.9. Let A be a u-domain with quotient field K, M be a K-vector space, and $R=A(+) M$. Then Conjecture one holds in R.

Proof. Since A satisfies Conjecture one by Theorem 5.4, we conclude that R satisfies Conjecture one by Theorem 3.4.

The following is an example of a ring that is not a u-ring but it satisfies Conjecture one.

Example 5.10. Let $R=\mathbb{Z}_{3}(+) \mathbb{Z}_{3}[X]$. Then R satisfies Conjecture one by Theorem [5.9] It is clear that $M=\{0\}(+) \mathbb{Z}_{3}[X]$ is the only maximum ideal of R. Since neither R / M is infinite (note that $R / M \cong \mathbb{Z}_{3}$) nor R_{M} (note that $R_{M}=R$) is a Bezout ring, we conclude that R is not a u-ring by [30, Theorem 2.6]. Note that R is not a um-ring by Theorem 5.6

Theorem 5.11. Let A be a commutative um-ring, M be an A-module, and $R=$ $A(+) M$. Then Conjecture one holds in R.

Proof. Let H be a maximal ideal of R. Then $H=L(+) M$ for some maximal ideal L of A. Since $R / H \cong A / L$ and A is a um-ring, we conclude that A / L is infinite, and thus R / H is infinite. Hence R is a um-ring by [30, Theorem 2.3]. Thus, R is a u-ring by Theorem 5.6. Hence R satisfies Conjecture one by Theorem 5.4.

6. ($\boldsymbol{m}, \boldsymbol{n}$)-Closed Ideals in Trivial Ring Extension

Let R be a commutative ring with $1 \neq 0$. We recall from [3] that a proper ideal I of R is called an (m, n)-closed ideal if $x^{m} \in I$ for $x \in R$ implies $x^{n} \in I$.

Theorem 6.1. Let A be a ring, M be an R-module, and $R=A(+) M$. Suppose that $J=I(+) N$ is a proper ideal of R, where I is a proper ideal of A and N is a submodule of M such that $I M \subseteq N$. If I is an (m, n)-closed ideal of A for some integers $0<n<m$, then J is an $(m, n+1)$-closed ideal of R.

Proof. Suppose that I is an (m, n)-closed ideal of A for some integers $0<n<m$. Let $x=(a, c) \in R$ and suppose that $x^{m}=\left(a^{m}, m a^{m-1} c\right) \in J$. Since I is an (m, n) closed ideal of A, we conclude that $\left(a^{n+1},(n+1) a^{n} c\right)=x^{n+1} \in J$. Thus J is an ($m, n+1$)-closed ideal of R.

In view of Theorem 6.1 the following is an example of an $(3,2)$-closed ideal I of Z but the proper ideal $J=I(+) I$ of $R=Z(+) Z$ is not an $(3,2)$-closed ideal of R.

Example 6.2. Let $R=Z(+) Z, p \neq 2$ be a positive prime number of $Z, I=p^{4} Z$ a proper ideal of Z, and $J=I(+) I$. Then J is a proper ideal of R and I is an (3,2)closed ideal of Z by [3, Corollary 3.3]. Let $x=\left(p^{2}, p\right) \in R$. Then $x^{3}=\left(p^{6}, 3 p^{5}\right) \in J$. Since $p \neq 2$, we have $x^{2}=\left(p^{4}, 2 p^{3}\right) \notin J$.

Lemma 6.3. Let A be a ring, M be an R-module, and $R=A(+) M$. Suppose that $J=I(+) N$ is a proper ideal of R, where I is an (m, n)-closed ideal of A for some integers $0<n<m$, and N is a submodule of M such that $I M \subseteq N$. Let $x=(a, c) \in R$ for some $a \in A$ and $c \in M$. Then $x^{m} \in J$ if and only if $a^{m} \in I$.

Proof. Suppose that $x^{m}=\left(a^{m}, m a^{m-1} c\right) \in J$. Then it is clear that $a^{m} \in I$.
Conversely, suppose that $a^{m} \in I$. Since I is an (m, n)-closed ideal of $R, a^{n} \in I$. Since $n \leq m-1$, we conclude that $a^{m-1} \in I$. Since $I M \subseteq N$ and $a^{m-1} \in I$, we conclude that $x^{m}=\left(a^{m}, m a^{m-1} c\right) \in J$.

Theorem 6.4. Let A be a ring, M be an R-module, and $R=A(+) M$. Suppose that $J=I(+) N$ is a proper ideal of R, where I is a proper ideal of A and N is a submodule of M such that $I M \subseteq N$. Let $0<n<m$ be integers. The following statements are equivalent:
(1) J is an (m, n)-closed ideal of R.
(2) I is an (m, n)-closed ideal of A and whenever $a^{m} \in I$ for some $a \in A$ implies $n a^{n-1} M \subseteq N$.

Proof. $(1) \Rightarrow(2)$. Suppose that J is an (m, n)-closed ideal of R. Then it is clear that I is an (m, n)-closed ideal of A. Assume that $a^{m} \in I$ for some $a \in A$. Let $c \in M$ and $x=(a, c)$. Since $a^{m} \in I$, we have $x^{m} \in R$ by Lemma 6.3 Since J is an (m, n)-closed ideal of R, we conclude that $x^{n}=\left(a^{n}, n a^{n-1} c\right) \in R$. Thus, $n a^{n-1} M \subseteq N$.
(2) $\Rightarrow(1)$. Suppose that I is an (m, n)-closed ideal of A and whenever $a^{m} \in I$ for some $a \in A$ implies $n a^{n-1} M \subseteq N$. Let $x=(a, c) \in R$ for some $a \in A$ and $c \in M$ and suppose that $x^{m}=\left(a^{m}, m a^{m-1} c\right) \in J$. Since $a^{m} \in I$ and I is an (m, n)-closed ideal of A, we conclude that $a^{n} \in A$ and $n a^{n-1} c \in N$. Thus, $x^{n}=\left(a^{n}, n a^{n-1} c\right) \in J$. Hence J is an (m, n)-closed ideal of R.

Theorem 6.5. Let A be a ring, M be an R-module, m and n integers with $1 \leq$ $n<m, I$ be a proper ideal of A, and $R=A(+) M$. Suppose that char $(A) \mid n$. Then the following statements are equivalent:
(1) $J=I(+) N$ is an (m, n)-closed ideal of R for every submodule N of M where $I M \subseteq N$.
(2) I is an (m, n)-closed ideal of A.

Proof. $(1) \Rightarrow(2)$. It is clear by Theorem 6.4
$(2) \Rightarrow(1)$. Let N be a submodule of M such that $I M \subseteq N$. Since char $(A) \mid n$, we conclude that whenever $a^{m} \in I$ for some $a \in A$ implies $n a^{n-1} M=0_{M} \subseteq N$, where 0_{m} is the additive identity of M. Thus, $J=I(+) N$ is an (m, n)-closed ideal of R by Theorem 6.4.

Theorem 6.6. Let D be an integral domain, $R=D(+) D, m$ and n integers with $1 \leq n<m$, and $I=p^{k} D$, where p is a prime element of D and k is a positive integer. Suppose that $m>k$ and $\operatorname{char}(D) \neq n$. Then the following statements are equivalent:

[^1](2) One of the following three cases must hold:
(a) $k<n<m$ and $i \leq k$.
(b) $n=k$, and $1 \leq i<k$.
(c) $n=i=k$, and $p \mid k \cdot 1_{D}($ in $D)$, where 1_{D} is the identity of D.

Proof. (1) $\Rightarrow(2)$. Suppose that $J=I(+) p^{i} D$ is an (m, n)-closed ideal of R for some integer $i \geq 1$. Since J is an ideal of R, we conclude that $I \subseteq p^{i} D$. Hence $i \leq k$. Since $J=I(+) p^{i} D$ is an (m, n)-closed ideal of R, we conclude that I is an (m, n) closed ideal of D and whenever $a^{m} \in I$ for some $a \in D$ implies $n a^{n-1} D \subseteq p^{i} D$ by Theorem 6.4 Since $m>k, p^{m} \in I$ and hence $p^{n} \in I$ and $n p^{n-1} D \subseteq p^{i} D$. In particular, $n p^{n-1} \in p^{i} D$. Since $p^{n} \in I$, we conclude that $n \geq k$. Suppose that $n=k$. Then $n p^{n-1}=k p^{k-1} \in p^{i} D$ if and only if either $1 \leq i<k$ or $i=k$ and $p \mid k \cdot 1_{D}$.
$(2) \Rightarrow(1)$. In view of proof $(1) \Rightarrow(2)$ above, one can easily verify that if (a) or (b) or (c) holds, then I is an (m, n)-closed ideal of D and whenever $a^{m} \in I$ for some $a \in D$ implies $n a^{n-1} D \subseteq p^{i} D$. Hence J is an (m, n)-closed ideal of R by Theorem 6.4

Definition 6.7. Let p be a prime element of an integral domain D. Suppose that $p^{w} \mid d$ for some $d \in D$ and a positive integer w but $p^{w+1} \nmid d$. Then we write $p^{w} \| d$.

Theorem 6.8. Let D be an integral domain, $R=D(+) D, m$ and n integers with $1 \leq n<m$, and $I=p^{k} D$, where p is a prime element of D and k is a positive integer. Suppose that $m<k$ and $\operatorname{char}(D) \neq n$. Let $v=\left\lceil\frac{k}{m}\right\rceil$ and $u=\left\lceil\frac{k}{v}\right\rceil$. Then the following statements are equivalent:
(1) $J=I(+) p^{i} D$ is an (m, n)-closed ideal of R for some integer $i \geq 1$.
(2) One of the following three cases must hold:
(a) $u<n<m$ and $i \leq k$.
(b) $u=n, p \nmid n \cdot 1_{D}($ in $D)$, and $i \leq v(n-1)<k$.
(c) $u=n, p^{w} \| n \cdot 1_{D}($ in $D)$, and $i \leq \min \{v(n-1)+w, k\}$.

Proof. (1) \Rightarrow (2). Suppose that $J=I(+) p^{i} D$ is an (m, n)-closed ideal of R for some integer $i \geq 1$. Since J is an ideal of R, we conclude that $I \subseteq p^{i} D$. Hence $i \leq k$. It is clear that $v=\left\lceil\frac{k}{m}\right\rceil$ is the smallest positive integer where $\left(p^{v}\right)^{m} \in I$. Also, it is clear that u is the smallest positive integer where $\left(p^{v}\right)^{u} \in I$. Since $J=I(+) p^{i} D$ is an (m, n)-closed ideal of R and $1 \leq n<m$, we conclude that $u \leq n<m$. Since $J=I(+) p^{i} D$ is an (m, n)-closed ideal of R, we conclude that I is an (m, n) closed ideal of D and whenever $a^{m} \in I$ for some $a \in D$ implies $n a^{n-1} D \subseteq p^{i} D$ by Theorem 6.4. Hence since $\left(p^{v}\right)^{m} \in I$, we conclude that $n\left(p^{v}\right)^{n-1} \in p^{i} D$ by Theorem 6.4. If $u<n<m$, then $u \leq n-1$ and thus $n\left(p^{v}\right)^{n-1} \in p^{k} D=I$ (note that $\left(p^{v}\right)^{u} \in I$) and $i \leq k$. Suppose that $n=u$ and $p \nmid n \cdot 1_{D}$ (in D). Since u is the smallest positive integer where $\left(p^{v}\right)^{u} \in I$ and $p \nmid n \cdot 1_{D}$, we conclude that
$v(n-1)<k$ and $n\left(p^{v}\right)^{n-1} \in p^{i} D$ if and only if $i \leq v(n-1)<k$. Suppose that $u=n$ and $p^{w} \| n \cdot 1_{D}$ (in D). Since $i \leq q$, we conclude that $n\left(p^{v}\right)^{n-1} \in p^{i} D$ if and only if $i \leq \min \{v(n-1)+w, k\}$.
(2) \Rightarrow (1). In view of proof $(1) \Rightarrow(2)$ above, one can easily verify that if (a) or (b) or (c) holds, then I is an (m, n)-closed ideal of D and whenever $a^{m} \in I$ for some $a \in D$ implies $n a^{n-1} D \subseteq p^{i} D$. Hence J is an (m, n)-closed ideal of R by Theorem 6.4.

Let R be an integral domain, $I=p^{k} R$, where p is a prime element of R and k is a positive integer, and m and n be fixed positive integers with $1 \leq n<m$. The authors in [3, Theorem 3.1] determined the set $\left\{k \in \mathbb{N} \mid p^{k} R\right.$ is (m, n)-closed $\}$. We recall the following result.

Theorem 6.9 ([3, Theorem 3,1]). Let D be an integral domain, m and n integers with $1 \leq n<m$, and $I=p^{k} D$, where p is a prime element of D and k is a positive integer. Then the following statements are equivalent:
(1) I is an (m, n)-closed ideal of D.
(2) If $m=b n+c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n-1$, then $k \in\{1, \ldots, n\}$. If $m=n+c$ for an integer c with $1 \leq c \leq n-1$, then $k \in \bigcup_{h=1}^{n}\{m i+h \mid i \in \mathbb{Z}$ and $0 \leq i c \leq n-h\}$.

In view of Theorems 6.6, 6.8 and 6.9, we have the following result.
Theorem 6.10. Let D be an integral domain, $R=D(+) D, m$ and n integers with $1 \leq n<m$, and $I=p^{k} D$, where p is a prime element of D and k is a positive integer. Suppose that $\operatorname{char}(D) \neq n$. Then the following statements are equivalent:
(1) $J=I(+) p^{i} D$ is an (m, n)-closed ideal of R for some integer $i \geq 1$.
(2) If $m=b n+c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n-1$, then $k \in\{1, \ldots, n\}$ and one of the following three cases must hold:
(a) $k<n<m$ and $i \leq k$.
(b) $n=k$, and $1 \leq i<k$.
(c) $n=i=k$, and $p \mid k \cdot 1_{D}($ in $D)$, where 1_{D} is the identity of D.

If $m=n+c$ for an integer c with $1 \leq c \leq n-1$, then $k \in \bigcup_{h=1}^{n}\{m i+h \mid i \in \mathbb{Z}$ and $0 \leq i c \leq n-h\}$ and one of the following three cases must hold: Let $v=\left\lceil\frac{k}{m}\right\rceil$ and $u=\left\lceil\frac{k}{v}\right\rceil$. Then
(a) $u<n<m$ and $i \leq k$.
(b) $u=n, p \nmid n \cdot 1_{D}($ in $D)$, and $i \leq v(n-1)<k$.
(c) $u=n, p^{w} \| n \cdot 1_{D}($ in $D)$, and $i \leq \min \{v(n-1)+w, k\}$.

Proof. (1) \Rightarrow (2). Suppose that $J=I(+) p^{i} D$ is an (m, n)-closed ideal of R for some integer $i \geq 1$. Then I is an (m, n)-closed ideal of D by Theorem 6.4 Suppose that $m=b n+c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n-1$. Then $k \in\{1, \ldots, n\}$ by Theorem 6.9. Hence $m>k$. Thus we are done by Theorem 6.6] Suppose that
$m=n+c$ for an integer c with $1 \leq c \leq n-1$. Then $k \in \bigcup_{h=1}^{n}\{m i+h \mid i \in \mathbb{Z}$ and $0 \leq i c \leq n-h\}$ by Theorem 6.9 Thus, $m<k$. Hence we are done by Theorem 6.8
(2) \Rightarrow (1). Suppose that $k \in\{1, \ldots, n\}$ and (a) or (b) or (c) holds. Since $m>k$, we are done by Theorem 6.6 Suppose that $m=n+c$ for an integer c with $1 \leq c \leq n-1$ and $k \in \bigcup_{h=1}^{n}\{m i+h \mid i \in \mathbb{Z}$ and $0 \leq i c \leq n-h\}$ and (a) or (b) or (c) holds. Since $m<k$, we are done by Theorem 6.8

In view of Theorems 6.1 and 6.9 we have the following result.
Theorem 6.11. Let D be an integral domain, $I=p^{k} D$, where p is a prime element of D and k is a positive integer, M be a D-module, $R=D(+) M, J=I(+) N$ is a proper ideal of R, where N is a submodule of M such that $I M \subseteq N$, and m and n integers with $1 \leq n<m$. Then the following statements are equivalent:
(1) I is an (m, n)-closed ideal of D and J is an $(m, n+1)$-closed ideal of R.
(2) If $m=b n+c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n-1$, then $k \in\{1, \ldots, n\}$. If $m=n+c$ for an integer c with $1 \leq c \leq n-1$, then $k \in \bigcup_{h=1}^{n}\{m i+h \mid i \in \mathbb{Z}$ and $0 \leq i c \leq n-h\}$.

Proof. (1) \Rightarrow (2). Suppose that I is an (m, n)-closed ideal of D and J is an ($m, n+1$)-closed ideal of R. Since I is an (m, n)-closed ideal of D, we are done by Theorem 6.9
$(2) \Rightarrow(1)$. By Theorem 6.9, I is an (m, n)-closed ideal of D. Hence J is an $(m, n+1)$-closed ideal of R by Theorem 6.1.

Theorem 6.12. Let A be an integral domain with quotient field K, M be a K vector space, and $R=A(+) M$. Then the following statements are equivalent:
(1) Every proper ideal of A is an (m, n)-closed ideal of A for some integers $1 \leq$ $n<m$.
(2) Every proper ideal of R is an (m, n)-closed ideal of R for some integers $1 \leq$ $n<m$.

Proof. $(1) \Rightarrow(2)$. Suppose that every proper ideal of A is an (m, n)-closed ideal of A for some integers $1 \leq n<m$. Let J be an ideal of R. Since M is a divisible A-module, we have $J=I(+) M$ for some proper ideal I of A or $J=\{0\}(+) N$ for some A-submodule N of M by (1, Corollary 3.4]). Suppose that $J=I(+) M$ for some proper ideal I. Since I is an (m, n)-closed ideal of A for some integers $1 \leq n<m$, it is clear that $J=I(+) M$ is an (m, n)-closed ideal of R. Suppose that $J=\{0\}(+) N$ for some A-submodule N of M. Since A is an integral domain, we have $J=\{0\}(+) N$ is an $(m, 2)$-closed ideal of R for every integer $m \geq 3$. Hence every proper ideal of R is an (m, n)-closed ideal of R for some integers $1 \leq n<m$.
$(2) \Rightarrow(1)$. It is clear.

References

[1] D. D. Anderson and M. Winderes, Idealisation of a module, J. Comm. Algebra 1 (2009) 3-56.
[2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646-1672.
[3] D. F. Anderson and A. Badawi, On (m, n)-closed ideals of commutative rings, J. Algebra Appl. 16(1) (2017) 1750013, 21 pp.
[4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417-429.
[5] A. Badawi, U. Tekir and E. Yeikin, Generalizations of 2-absorbing primary ideals of commutative rings, Turk. J. Math. 40 (2016) 703-717.
[6] A. Badawi, U. Tekir and E. Yeikin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015) 97-111.
[7] A. Badawi, U. Tekir and E. Yeikin, On 2-absorbing primary ideals of commutative rings, Bull. Korean Math. Soc. 51 (2014) 1163-1173.
[8] A. E. Becker, Results on n-absorbing ideals of commutative rings, M. S. thesis, University of Wisconsin-Milwaukee, Milwaukee, U. S. A. (2015).
[9] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extension definided by Prüfer conditions, J. Pure Appl. Algebra 214 (2010) 53-60.
[10] P. J. Cahen, M. Fontana, S. Frisch and S. Glaz, Open problems in commutative ring theory, Commutative Algebra (Springer, 2014), pp. 353-375.
[11] F. Callialp, E. Yetkin and U. Tekir, On 2-absorbing primary and weakly 2-absorbing elements in multiplicative lattices, Italian J. Pure Appl. Math. 34 (2015) 263-276.
[12] E. Y. Celikel, E. A. Ugurlu and G. Ulucak, On ϕ-2-absorbing elements in multiplicative lattices, Palest. J. Math. 5 (2016) 127-135.
[13] E. Y. Celikel, E. A. Ugurlu and G. Ulucak, On ϕ-2-absorbing primary elements in multiplicative lattices, Palest. J. Math. 5 (2016) 136-146.
[14] J. N. Chaudhari, 2-absorbing ideals in semirings, Int. J. Algebra 6 (2012) 265-270.
[15] H. S. Seung Choi and A. Walker, The radical of an n-absorbing ideal (2016), arXiv:1610.10077 [math.AC].
[16] A. Yousefian Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013) 83-91.
[17] A. Yousefian Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J. 52 (2012) 91-97.
[18] A. Yousefian Darani and H. Mostafanasab, Generalizations of semicoprime preradicals, Algebra Discrete Math. 21 (2016) 214-238.
[19] A. Yousefian Darani and H. Mostafanasab, On 2-absorbing preradicals, J. Algebra Appl. 14 (2015) 22 pages.
[20] A. Yousefian Darani and H. Mostafanasab, Co-2-absorbing preradicals and submodules, J. Algebra Appl. 14 (2015) 23 pages.
[21] G. Donadze, The Anderson-Badawi conjecture for commutative algebras over infinite fields, Indian J. Pure Appl. Math. 47 (2016) 691-696.
[22] M. Hamoda and A. E. Ashour, On graded n-absorbing submodules, Le Matematiche 70 (2015) 243-254.
[23] J. A. Huckaba, Commutative Rings with Zero Divisors (Marcel Dekker, New York Basel, 1988).
[24] C. Jayaram, U. Tekir and E. Yetkin, 2-absorbing and weakly 2-absorbing elements in multiplicative lattices, Comm. Algebra 42 (2014) 2338-2353.
[25] P. Kumar, M. K. Dubey and P. Sarohe, On 2-absorbing primary ideals in commutative semirings, Euro. J. Pure Appl. Math. 9 (2016) 186-195.
[26] P. Kumar, M. K. Dubey and P. Sarohe, Some results on 2-absorbing ideals in commutative semirings, J. Math. Appl. 38 (2015) 5-13.
[27] A. Laradji, On n-absorbing rings and ideals, Colloquium Mathematicum 147 (2017) 265-273.
[28] A. Malek, A. Hamed and A. Benhissi, 2-absorbing ideals in formal power series rings, Palest. J. Math. 6(2) (2017) 502-506.
[29] P. Nasehpour, On the Anderson-Badawi $w_{R[X]}(I[X])=w_{R}(I)$ conjecture, Arch. Math. Brno 52 (2016) 71-78.
[30] P. Quartararo, JR. and H. S. Butts, Finite unions of ideals and modules, Proc. Am. Math. Soc. 52 (1975) 91-96.
[31] S. Smach and S. Hizem, On Anderson-Badawi conjectures, Beitr. Algebra Geom., doi: $10.1007 / \mathrm{s} 13366-017-0343-9$ (to appear).

[^0]: 『 Corresponding author.

[^1]: $J=I(+) p^{i} D$ is an (m, n)-closed ideal of R for some integer $i \geq 1$.

