

On *n*-absorbing ideals and (m, n)-closed ideals in trivial ring extensions of commutative rings

Ayman Badawi^{*,‡}, Mohammed Issoual^{†,§} and Najib Mahdou^{†,¶}

*Department of Mathematics and Statistics The American University of Sharjah, P. O. Box 26666 Sharjah, United Arab Emirates

[†]Department of Mathematics Faculty of Science and Technology University S. M. Ben Abdellah, Fez 30000, Morocco [‡]abadawi@aus.edu [§]issoual2@yahoo.fr ¶mahdou@hotmail.com

> Received 9 November 2017 Accepted 8 June 2018 Published 19 July 2018

Communicated by E. Gorla

Let R be a commutative ring with $1 \neq 0$. Recall that a proper ideal I of R is called a 2-absorbing ideal of R if $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. A more general concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let $n \geq 1$ be a positive integer. A proper ideal I of R is called an n-absorbing ideal of R if $a_1, a_2, \ldots, a_{n+1} \in R$ and $a_1, a_2 \cdots a_{n+1} \in I$, then there are n of the a_i 's whose product is in I. The concept of n-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of R is a 1-absorbing ideal of R). Let m and n be integers with $1 \leq n < m$. A proper ideal I of R is called an (m, n)-closed ideal of R if whenever $a^m \in I$ for some $a \in R$ implies $a^n \in I$. Let A be a commutative ring with $1 \neq 0$ and M be an A-module. In this paper, we study n-absorbing ideals and (m, n)-closed ideals in the trivial ring extension of A by M (or idealization of M over A) that is denoted by A(+)M.

Keywords: Prime ideal; radical ideal; 2-absorbing ideal; n-absorbing ideal; (m, n)-closed ideal; trivial extension; idealization of a ring.

Mathematics Subject Classification 2010: 13A15, 13F05, 13G05

1. Introduction

We assume throughout that all rings are commutative with $1 \neq 0$. Over the past several years, there has been considerable attention in the literature to *n*-absorbing ideals of commutative rings and their generalizations, for example see ([2–8, 10–22,

[¶]Corresponding author.

24-29, 31]). We recall from [4] that a proper ideal I of R is called a 2-*absorbing ideal* of R if $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. A more general concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let $n \ge 1$ be a positive integer. A proper ideal I of R is called an n-*absorbing ideal* of R as in [2] if $a_1, a_2, \ldots, a_{n+1} \in R$ and $a_1, a_2 \cdots a_{n+1} \in I$, then there are n of the a_i 's whose product is in I. A proper ideal of R is called a *strongly* n-*absorbing ideal* of R as in [2] if whenever $I_1 \cdots I_{n+1} \subseteq I$ for ideals I_1, \ldots, I_{n+1} of R, then the product of some n of the I'_j 's is contained in I. The concept of n-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of R is a 1-absorbing ideal of R). Let m and n be the positive integers with $1 \leq n < m$. We recall from [3] that a proper ideal I of R is called an (m, n)-closed ideal of R if whenever $a^m \in I$ for some $a \in I$ implies $a^n \in I$.

Let A be a commutative ring and M be an A-module. The trivial ring extension of A by M (or the idealization of M over A) is the ring R = A(+)M whose underlying group is $A \times M$ with multiplication given by (a,b)(c,d) = (ac, ad + bc) (for example see [23]). In this paper, we study n-absorbing ideals, strongly n-absorbing ideals, and (m, n)-closed ideals in the ring R = A(+)M. We start by recalling some background materials. We say A is a quasilocal ring if A has exactly one maximal ideal. If I is a primary ideal of a ring A with $\sqrt{I} = P$ (a prime ideal of A), then we say that I is a P-primary ideal of A. A prime ideal P of a ring A is called divided if $P \subset x$ for every $x \in A \setminus P$. Suppose that I is a n-absorbing ideal of a ring A for some integer $n \ge 1$. Then, as in [2], we put $w_A(I) = \min\{n \in \mathbb{N} \mid I \text{ is n-absorbing ideal of A}\}$, and $w_A^*(I) = \min\{n \in \mathbb{N} \mid I \text{ is a strongly n-absorbing ideal of A}\}$. Let A be a commutative ring and M be an A-module. Then a submodule N of M is called a P-primary submodule of M for some prime ideal P of A if $(N:M) = \{x \in A \mid xM \subseteq N\}$ is a primary ideal of A with $\sqrt{(N:M)} = \{a \in A \mid a^n M \subseteq N \text{ for some integer } n \ge 1\} = P$.

- Let $n \ge 1$ be an integer and I be a proper ideal of A. Anderson and Badawi in [2] (also see [10]) proposed the following three conjectures:
- (1) Conjecture one: I is an n-absorbing ideal of A if and only if I is a strongly n-absorbing ideal of A.
- (2) Conjecture two: If I is an n-absorbing ideal of A, then $(\sqrt{I})^n \subseteq I$. An affirmative answer to this conjecture is given in [15].
- (3) Conjecture three: If I is an n-absorbing ideal of A, then I[X] is an n-absorbing ideal of A[X].

In this paper, we study the validity of the above three conjectures in the ring R = A(+)M.

2. *n*-Absorbing Ideals in Trivial Ring Extensions

We recall [1, Corollary 3.4] that if A is an integral domain and M is a divisible A-module, then every ideal of A(+)M has the form I(+)M for some proper ideal I of A or 0(+)N for some submodule N of M.

In the following result, we collect some trivial facts about *n*-absorbing ideals and (m, n)-closed ideals in R = A(+)M and hence we omit the proof.

Theorem 2.1. Let A be a commutative ring, I be a proper ideal of A, M be an A-module, and R = A(+)M. Then

- I is an n-absorbing ideal of A if and only if I(+)M is an n-absorbing ideal of R.
- (2) I is a strongly n-absorbing ideal of A if and only if If I(+)M is a strongly n-absorbing of R.
- (3) I is an (m,n)-closed ideal of A if and only if I(+)M is an (m,n)-closed ideal of R.

Example 2.2. Let A be a field and M be an A-vector space. It is clear that R = A(+)M is a quasilocal ring with the maximal is $M = \{0\}(+)M$. Since $M^2 = \{0\}$, we conclude that every ideal of R is a 2-absorbing ideal of R and hence a strongly 2-absorbing ideal of R by [4, Theorem 2.13]. Thus every ideal of R is a strongly n-absorbing ideal of R for every $n \ge 2$.

We recall the following results.

- **Theorem 2.3.** (1) ([15]) If I is an n-absorbing ideal of a ring A for some integer $n \ge 1$, then $(\sqrt{I})^n \subseteq I$.
- (2) ([2, Theorem 3.1]) Let P be a prime ideal of a ring A, and let I be a P-primary ideal of A such that Pⁿ ⊆ I for some positive integer n (for example, if A is a Noetherian ring). Then I is an n-absorbing ideal of A.
- (3) ([2, Theorem 6.6]) Let P be a prime ideal of a ring A, I be a P-primary ideal of A, and n ≥ 1 be an integer. Then I is a strongly n-absorbing ideal of A if and only if Pⁿ ⊆ I and I is an n-absorbing ideal of R.
- (4) ([2, Theorem 3.2]) Let P be a divided prime ideal of A, and let I be an n-absorbing ideal of A with $\sqrt{I} = P$. Then I is a P-primary ideal of A.
- (5) ([2, Theorem 3.3]) Assume that √{0} ⊂ P are divided prime ideals of A and n ≥ 1 be an integer. Then Pⁿ is a P-primary ideal of A, and thus Pⁿ is an n-absorbing ideal of A.

In view of Theorem 2.3, we have the following result.

- **Corollary 2.4.** (1) Let P be a prime ideal of a ring A, $n \ge 1$ be an integer, and let I be a P-primary ideal of A. Then I is an n-absorbing ideal of A if and only if $P^n \subseteq I$ if and only if I is a strongly n-absorbing ideal of A.
- (2) Let P be a divided prime ideal of A, and let I be a proper ideal of A with $\sqrt{I} = P$. Then I is an n-absorbing ideal of A if and only if I is a P-primary ideal of A and $P^n \subseteq I$ if and only if I is a strongly n-absorbing ideal of A.
- (3) Assume that √{0} ⊂ P are divided prime ideals of A and n ≥ 1 be an integer. Then Pⁿ is a strongly n-absorbing ideal of A.

Proof. (1) By Theorem 2.3[(1), (2), (3)], the claim follows.

- (2) By Theorem 2.3[(4), (1), (2), (3)], the claim follows.
- (3) By Theorem 2.3[(5), (2), (3)], the claim follows.

Theorem 2.5. Let A be a commutative ring, M be an A-module, R = A(+)M, $n \ge 1$ be an integer, I be a proper ideal of A, and N be a submodule of M such that $IM \subseteq N$. Then:

- (1) If I(+)N is an n-absorbing ideal of R, then I is an n-absorbing ideal of A.
- (2) Let P be a prime ideal of A, I be a P-primary ideal of A, and N be a P-primary submodule of M. Then I is an n-absorbing ideal of A if and only if I(+)N is an n-absorbing ideal of R.
- (3) Let P be a prime ideal of A, I be a P-primary ideal of A, and N be a P-primary submodule of M. Then I(+)N is an n-absorbing ideal of R if and only if I(+)N is a strongly n-absorbing ideal of R.
- (4) Let P be a divided prime ideal of A, I be an n-absorbing ideal of A with √I = P, and N be a P-primary submodule of M. Then I(+)N is a strongly n-absorbing ideal of R.
- (5) Assume that √{0} ⊂ P are divided prime ideals of A such that PⁿM ⊆ N. If N is a P-primary submodule of M, then Pⁿ(+)N is a strongly n-absorbing ideal of R.
- (6) Assume that A is a Prüfer domain and let J = I(+)M. Then J = I(+)M is an n-absorbing ideal of R if and only if J is a strongly n-absorbing ideal of R. Moreover w(J) = w*(J).

Proof. (1) No comments.

- (2) Since I is a P-primary ideal of A and N is a P-primary submodule of M, we conclude that I(+)N is a P(+)M-primary ideal of R by [1, Theorem 3.6]. Suppose that I is an n-absorbing ideal of A. Then (√I)ⁿ = Pⁿ ⊆ I by Theorem 2.3(1). Hence (√I(+)N)ⁿ = (P(+)M)ⁿ ⊆ Pⁿ(+)N ⊆ I(+)N. Thus, I(+)N is an n-absorbing ideal of R by Corollary 2.4(1). Conversely, suppose that I(+)N is an n-absorbing ideal of R. Then (√I(+)N)ⁿ = (P(+)M)ⁿ ⊆ I(+)N by Theorem 2.3(1). In particular, Pⁿ ⊆ I. Since I is a P-primary ideal of A and Pⁿ ⊆ P, we conclude that I is an n-absorbing ideal of A by Corollary 2.4(1).
- (3) Since I(+)N is a P(+)M-primary ideal of R by [1, Theorem 3.6] and $(\sqrt{I(+)N})^n = (P(+)M)^n \subseteq I(+)N$ by Theorem 2.3(1), the claim follows by Theorem 2.3(3).
- (4) By Corollary 2.4(2), we conclude that I is a P-primary ideal of A. Hence we are done by (2) and (3).
- (5) By Theorem 2.3, we conclude that P^n is a *P*-primary ideal of *A* and hence an *n*-absorbing ideal of *A*. Thus we are done by (2) and (3).
- (6) Suppose that J = I(+)M is an *n*-absorbing ideal of *R*. Then *I* is an *n*-absorbing ideal of *A*. Since *A* is a Prüfer domain, we conclude that *I* is a strongly

n-absorbing ideal of A by [2, Corollary 6.9]. Hence J = I(+)M is s strongly *n*-absorbing ideal of R. The converse is clear. It is clear that $w(J) = w^*(J)$.

3. Conjecture One in Trivial Ring Extension

Let $n \ge 1$ be an integer and I be a proper ideal of a ring A. Anderson and Badawi in [2] (also see [10]) proposed the following conjecture.

Conjecture one: I is an n-absorbing ideal of A if and only if I is a strongly n-absorbing ideal of A.

Laradji in [27] proved that conjecture one holds in some rings that satisfy certain conditions. In particular, he proved that Conjecture three implies Conjecture one. We have the following lemma.

Lemma 3.1. Let A be an integral domain with quotient field K, M be a K-vector space, F be a K-subspace of M, and R = A(+)M. Then $J = \{0\}(+)F$ is a strongly 2-absorbing ideal of R, and thus J is a strongly n-absorbing ideal of R for every $n \ge 2$.

Proof. First, we show that J is a 2-absorbing ideal of R. Let $x_i = (a_i, e_i) \in R$, where $1 \leq i \leq 3$. Suppose that $x_1x_2x_3 \in \{0\}(+)F$. Since A is an integral domain, we may assume that $a_3 = 0$. Suppose that $a_1a_2 = 0$. Then $x_1x_3 \in J$ or $x_2x_3 \in J$. Suppose that $a_1a_2 \neq 0$. Then $x_1x_2x_3 = (0, a_1a_2e_3)$. Since F is a K-subspace of M, we conclude that $a_2^{-1}a_1^{-1}(a_1a_2e_3) = e_3 \in F$. Hence $x_3 = (0, e_3) \in J$, and thus $x_1x_3 \in J$. Hence J is a 2-absorbing ideal of R. Thus, J is a strongly 2-absorbing ideal of R by [4, Theorem 2.13], and hence J is a strongly n-absorbing ideal of R for every $n \geq 2$.

Theorem 3.2. Let A be an integral domain with quotient field K, M be a K-vector space, F be an A-submodule of M, and R = A(+)M. Then $\{0\}(+)F$ is an n-absorbing ideal of R for some $n \ge 2$ if and only if F is a K-subspace of M.

Proof. Suppose that $J = \{0\}(+)F$ is an *n*-absorbing ideal of R for some $n \ge 2$. Let a be a nonzero element of A and $f \in F$. We show $\frac{1}{a}f \in F$. Let $x = (a, 0), y = (0, \frac{f}{a^n}) \in R$. Then $x^n y = (0, f) \in J$. Since $a \ne 0$ and J is an *n*-absorbing ideal of R, we conclude that $x^{n-1}y = (0, \frac{f}{a}) \in J$. Thus, $\frac{1}{a}f \in F$. Now let $h \in K$ and $v \in F$. Then $h = \frac{b}{c} \in K$ for some $b, c \in A$ with $c \ne 0$. Since $\frac{1}{c}v \in F$ and F is an A-submodule of M, we conclude that $hv = \frac{b}{c}v \in F$. Thus, F is a K-subspace of M. The converse is clear by Lemma 3.1.

Corollary 3.3. Let A be an integral domain that is not a field with quotient field K, and R = A(+)K. Then $J = \{0\}(+)A$ is not an n-absorbing ideal of R for every $n \ge 1$.

Proof. Since A is not a field, we conclude that A is not a K-subspace of K. Hence we are done by Theorem 3.2. \Box

Theorem 3.4. Let A be an integral domain with quotient field K, M be a K-vector space, and R = A(+)M. Then Conjecture one holds in R if and only if Conjecture one holds in A.

Proof. First, observe that M is a divisible A-module. Hence every ideal of R = A(+)M has the form I(+)M for some proper ideal I of A or 0(+)N for some submodule N of M by [1, Corollary 3.4].

Suppose that Conjecture one holds in R. Let I be a proper n-absorbing ideal of A for some integer $n \ge 1$. Then J = I(+)M is a n-absorbing ideal of R = A(+)M, and hence a strongly n-absorbing ideal R by hypothesis. Thus, I is a strongly n-absorbing ideal of A by Theorem 2.1(2).

Conversely, suppose that Conjecture one holds in A. Let J be a proper n-absorbing ideal of R = A(+)M for some $n \ge 1$. Hence J is the form I(+)M where I is a proper ideal of A or O(+)F where F is a K-subspace of M.

Case 1. J = I(+)M, where I is a proper ideal of A. Since J is an n-absorbing ideal of R, we conclude that I is an n-absorbing ideal of A by Theorem 2.1(1), and hence I is a strongly n-absorbing ideal of A by hypothesis. Thus, J = I(+)M is a strongly n-absorbing ideal of R = A(+)M by Theorem 2.1(2).

Case 2. $J = \{0\}(+)F$, where F is an A-submodule of M. If n = 1, then F = M and we are done. Hence assume that $n \ge 2$. Since J is an n-absorbing ideal of R, we conclude that F is a K-subspace of M by Theorem 3.2. Hence J is a strongly n-absorbing ideal of R for every $n \ge 2$ by Lemma 3.1. Thus, Conjecture one holds in R = A(+)M.

Corollary 3.5. Let A be a Prüfer domain with quotient field K, M be K-vector space, and R = D(+)M. Then Conjecture one holds in R.

Proof. Since A is a Prüfer domain, Conjecture one holds in A by [2, Corollary 6.9]. Thus Conjecture one holds in R by Theorem 3.4.

We recall the following result.

Theorem 3.6 ([2, Corollary 6.8]). Let R be a Noetherian ring. Then every proper ideal of R is a strongly n-absorbing ideal of R for some positive integer n.

Theorem 3.7. Let A be a Noetherian ring, M be an A-module, R = A(+)M, and I be a proper ideal of A. Then J = I(+)M is a strongly n-absorbing ideal of R for some positive integer n.

Proof. Since I is a strongly n-absorbing ideal of A for some positive integer n by Theorem 3.6, we conclude that J = I(+)M is a strongly n-absorbing ideal of R.

Theorem 3.8. Let A be a Noetherian ring, M be a finitely generated A-module, and R = A(+)M. Then every ideal of R is a strongly n-absorbing ideal of R for some positive integer n.

Proof. Since A be a Noetherian ring and M is a finitely generated A-module, we conclude that R is a Noetherian ring by [1, Theorem 4.8]. Hence the claim follows from Theorem 3.6.

Question 1. In view of Theorem 3.6, El Amin El Kaidi asked the following question: Let A be a ring and assume that every ideal of A is an n-absorbing ideal of R for some integer $n \ge 1$. Does it imply that A is a Noetherian ring?

The following example gives a negative answer to the above question.

Example 3.9. Let $A \subset K$ be fields such that K is not a finitely generated A-module (for example, let $A = \mathbb{Q}$ and $K = \mathbb{R}$) and R = A(+)K. Since R is a quasilocal ring with maximal ideal $M = \{0\}(+)K$ and $M^2 = \{(0,0)\}$, we conclude that every ideal of R a 2-absorbing ideal of R (and hence every ideal of R is a strongly n-absorbing ideal of R for every $n \ge 2$ by [4, Theorem 2.13]). Since K is not a finitely generated A-module, we conclude that $\{0\}(+)K$ is not a finitely generated of R. Thus R is not a Noetherian ring.

Remark 3.10. Let R be a ring and n a positive integer such that every proper ideal of R is an n-absorbing ideal of R. Then by [2, Theorem 5.9], we have dim(R) = 0 and R has at most n maximal ideals.

We have the following result.

Theorem 3.11. Let A be an integral domain with quotient field K, M be a finite dimensional vector space over K, and R = A(+)M. Then every proper ideal of R is an n-absorbing ideal of R for some $n \ge 1$ if and only if A = K.

Proof. Suppose that A = K. Since M is a finite dimensional vector space over K, we conclude that R a Noetherian ring by [1, Theorem 4.8]. Hence every proper ideal of R is an n-absorbing ideal of R for some $n \ge 1$ by Theorem 3.6. Conversely, suppose that every proper ideal of R is an n-absorbing ideal of R for some $n \ge 1$. Since M is a finite dimensional vector space over K, we may assume that $M = K \times \cdots \times K$ (m times, where $m = \dim_K(M) < \infty$). Hence $N = A \times \cdots \times A$ is a an A-submodule of M and $J = \{0\} \times N$ is a 2-absorbing ideal of R. Since $J = \{0\} \times N$ is a 2-absorbing ideal of R, we conclude that N is a K-subspace of M by Theorem 3.2. Thus, A = K.

In light of Theorems 3.6 and 3.11, we have the following result.

Corollary 3.12. Let A be an integral domain with quotient field K, M be a finite dimensional vector space over K, and R = A(+)M. Then the following statements

are equivalent.

- (1) Every proper ideal of R is a strongly n-absorbing ideal of R for some $n \ge 1$.
- (2) Every proper ideal of R is an n-absorbing ideal of R for some $n \ge 1$.
- (3) A = K.
- (4) A is a Noetherian ring.
- (5) R is a Noetherian ring.

Theorem 3.13. Let A be a Noetherian domain with quotient field K, M be a K-vector space, and R = A(+)M. Then a proper ideal J of R is an n-absorbing ideal of R for some $n \ge 1$ if and only if J is a strongly m-absorbing ideal of R for some $m \ge 1$.

Proof. If n = 1 or m = 1. Then J is a prime ideal of R, and hence the claim is clear. Let J be a proper ideal of R. Since M is a divisible A-module, we conclude that J = I(+)M for some proper ideal I of A or $J = \{0\}(+)F$ for some A-submodule F of M by [1, Corollary 3.4]. Suppose that J is n-absorbing ideal of R for some $n \ge 2$. Assume that J = I(+)M for some proper ideal I of A. Since I is a strongly m-absorbing ideal of A for some positive integer m by Theorem 3.6, we conclude that J = I(+)M is a strongly m-absorbing ideal of R. Suppose that $J = \{0\}(+)F$ for some A-submodule F of M. Then F is a K-subspace of M by Theorem 3.2. Thus J is a strongly k-absorbing ideal of R for every integer $k \ge 2$ by Lemma 3.1. The converse is clear.

4. Conjecture Three in Trivial Ring Extension

Let A be a commutative ring, and M an A-module, let R = A(+)M, we know (A(+)M)[X] is naturally isomorphic to A[X](+)M[X]. If I is a ideal of A, then (I(+)M)[X] is naturally isomorphic to I[X](+)M[X].

We recall the following result.

Theorem 4.1 ([2, Theorem 4.15]). Let I be a proper ideal of a ring A. Then I[X] is a 2-absorbing ideal of R[X] if and only if I is a 2-absorbing ideal of R.

Theorem 4.2. Let A be an integral domain with quotient field K, M be a K-vector space, and R = A(+)M. Then Conjecture three holds in R if and only if Conjecture three holds in A.

Proof. Suppose the Conjecture three holds in A. Let J be a proper *n*-absorbing ideal of R for some $n \ge 1$. Hence J = I(+)M for some proper ideal I of A or $J = \{0\}(+)F$ for some K-subspace F of M by [1, Corollary 3.4] and Theorem 3.2.

Case 1. Suppose that J = I(+)M for some proper ideal I of A. Then I is an n-absorbing ideal of A. Thus I[X] is an n-absorbing ideal of A[X] by hypothesis. Hence $w_A(I) = w_{A[X]}(I[X])$. Since J[X] is isomorphic to I[X](+)M[X],

we conclude that J[X] is an *n*-absorbing ideal of R[X]. Since $w_{R[X]}(J[X]) = w_{A[X](+)M[X]}(I[X](+)M[X]) = w_{A[X]}(I[X]) = w_{A[X]}(I[X])$. Hence $w_{R[X]}(J[X]) = w_{R}(J)$.

Case 2. Suppose that J = 0(+)F for some K-subspace F of M.

Since J is a 2-absorbing ideal of R, we conclude that J[X] is a 2-absorbing absorbing ideal of R[X] by Theorem 4.1. Hence Conjecture three holds in R.

Conversely, suppose that Conjecture three holds in R. Let I be an n-absorbing ideal of A. Then I(+)M is n-absorbing ideal of R. Hence (I(+)M)[X] is n-absorbing ideal of R[X] by hypothesis. Since $(I(+)M)[X] \cong I[X](+)M[X]$, we conclude that I[X] is an n-absorbing ideal of A[X].

Laradji [27, Corollary 2.11] showed that Conjecture three holds in arithmetical rings. Since a Prüfer domain is both arithmetical and Gaussian ring, the following result is an immediate consequence of [27, Corollary 2.11] and [31, Theorem 2.6].

Lemma 4.3 ([27, Corollary 2.11] and [31, Theorem 2.6]). Let A be a Prüfer domain and I be a proper n-absorbing ideal of A for some integer $n \ge 1$. Then I[X]is an n-absorbing ideal of A[X].

In the following result, we construct rings with zero-divisors that satisfy Conjecture three but they do not need be arithmetical rings.

Theorem 4.4. Let A be a Prüfer domain with quotient field K, M be K-vector space, n be a positive integer, and J be a proper ideal of R = A(+)M (note that if M = K[X], then R is not an arithmetical ring by [9, Theorem 2.1(2)]). If J is an n-absorbing ideal of R, then J[X] is an n-absorbing ideal of R[X] and $w_R(J) = w_{R[X]}(J[X])$.

Proof. Since A is a Prüfer domain, Conjecture three holds in A by Lemma 4.3. Thus Conjecture three holds in R by Theorem 4.2. Thus, If J is an n-absorbing ideal of R, then J[X] is an n-absorbing ideal of R[X] and $w_R(J) = w_{R[X]}(J[X])$.

In the following example, we construct a non-arithmetical ring that satisfies Conjecture three.

Example 4.5. Let A be a Prüfer domain with quotient field K, M = K[X], and R = A(+)M. Then:

(1) R satisfies Conjecture three by Theorem 4.4.

(2) R is a non-arithmetical ring by [9, Theorem 2.1(2)].

Remark 4.6. Let I be a proper ideal of a ring A and $n \ge 1$. It is shown [2, Theorem 6.1] that if I is a strongly *n*-absorbing ideal of A, then $(\sqrt{I})^n \subseteq I$. It is shown [27, Proposition 2.9(1)] that if I[X] is an *n*-absorbing ideal of A[X], then I is a strongly *n*-absorbing ideal of A. It is shown [27, Corollary 2.11] that if I is an

n-absorbing ideal of an arithmetical ring A, then I[X] is an *n*-absorbing ideal of A[X]. Hence if A is an arithmetical ring, then all three Conjectures hold in A.

In the following result, we construct rings with zero-divisors that satisfy all three conjectures but they do not need be arithmetical rings.

Theorem 4.7. Let A be a Prüfer domain with quotient field K, M be K-vector space, n be a positive integer, and R = A(+)M (note that if M = K[X], then R is not an arithmetical ring by [9, Theorem 2.1(2)]). Suppose that J is an n-absorbing ideal of R. Then the following statements hold:

J is a strongly n-absorbing ideal of R.
J[X] is an n-absorbing ideal of R.
(√J)ⁿ ⊂ J.

Proof. (1) It is clear by Corollary 3.5.

(2) It is clear by Theorem 4.4.

(3) It is clear by [15].

5. Conjecture One in *u*-Rings

We recall from [30] that commutative ring R is called a u-ring if whenever an ideal I of R is contained in a finite union of ideals of R, then I is contained in at least one of those ideals. It is known that every Bezout ring is a u-ring and every Prüfer domain is a u-domain. In [31, Theorem 2.4], Smach and Hizem showed that Conjecture one holds in u-rings. In this section, we propose a proof of this result that is different from that in [31, Theorem 2.4]. We need the following notation. Let R be a commutative ring. If $x_1, \ldots, x_n \in R$, then $x_1, \ldots, \widehat{x_k} \cdots x_n$ denotes the product $x_1 \cdots x_n$ that omits x_k . Similarly, if I_1, \ldots, I_{n+1} are ideals of R, then $I_1 \cdots \widehat{I_k} \cdots I_{n+1}$ denotes the product I_1, \ldots, I_{n+1} that omits I_k . We start with the following lemmas.

Lemma 5.1. Let R be a commutative ring. Suppose there are ideals I_1, \ldots, I_{n+1} of R such that $I_1 \cdots I_{n+1} = \{0\}$ and no product of n of the I_j 's is equal to $\{0\}$. Then there are finitely generated ideals J_1, \ldots, J_{n+1} of R such that $J_1 \cdots J_{n+1} = \{0\}$ and no product of n of the J_i 's is equal to $\{0\}$.

Proof. Suppose there are ideals I_1, \ldots, I_{n+1} of R such that $I_1 \cdots I_{n+1} = \{0\}$ and no product of n of the I_j 's is equal to $\{0\}$.

Let $j \in \{1, \ldots, n+1\}$. Since $\prod_{i=1, i\neq j}^{n+1} I_i \neq \{0\}$ for all $i \neq j$, there exist $a_{i,j} \in I_i$ such that $\prod_{i=1, i\neq j}^{n+1} a_{i,j} \neq \{0\}$. Let $J_j = (a_{1,j}, \ldots, \widehat{a_{j,j}}, \ldots, a_{n+1,j})$ the ideal generated by $\{a_{i,j}, i \neq j, i = 1, \ldots, n+1\}$. Since $J_j \subseteq I_j$, we have $J_1 \cdots J_{n+1} = \{0\}$. Thus, $\prod_{i=1, i\neq j}^{n+1} J_i \neq \{0\}$, for every $j \in \{1, \ldots, n+1\}$, as desired.

Lemma 5.2. Suppose that in any ring $\{0\}$ is a strongly n-absorbing ideal if and only if $\{0\}$ is an n-absorbing ideal. Then every n-absorbing ideal in an arbitrary ring R is a strongly n-absorbing ideal of R.

Proof. Suppose *I* is *n*-absorbing ideal in a ring *A* and let the canonical homomorphism $f: R \to R/I$. Then $\{0\}$ is an *n*-absorbing ideal of A' = A/I by [2, Theorem 4.2] and thus $\{0\}$ is a strongly *n*-absorbing ideal of A'. Let I_1, \ldots, I_{n+1} are ideals of *A* such that $\prod_{i=1}^{n+1} I_i \subset I$, then $\prod_{i=1}^{n+1} f(I_i) = \{0\}$. Since $\{0\}$ is a strongly *n*-absorbing ideal of A', there exist $j \in \{1, \ldots, n+1\}$ such that $\prod_{i=1, i\neq j}^{n+1} f(I_i) = \{0\}$ and so $\prod_{i=1, i\neq j}^{n+1} I_i \subset I$. Therefore, *I* is a strongly *n*-absorbing ideal of *A*.

Lemma 5.3. Let R be a commutative u-ring such that $\{0\}$ is an n-absorbing ideal. Then $\{0\}$ is a strongly n-absorbing of R.

Proof. Let I_1, \ldots, I_{n+1} be ideals of R such that $I_1 \cdots I_{n+1} = \{0\}$. Assume that there is no product of n ideals of the I_j 's equals to zero. By Lemma 5.2, there are finitely generated ideals J_1, \ldots, J_{n+1} of R such that $J_1 \cdots J_{n+1} = \{0\}$ and no product of n of the J_i 's equals to $\{0\}$. Let n_j be the minimal number of generators for J_j , and $\varphi(J_1, \ldots, J_{n+1}) = \sum_{i=1}^{n+1} n_j$. It is clear that $\varphi(J_1, \ldots, J_{n+1}) \in \{n+1, \ldots, n(n+1)\}$.

We will show by induction that there exists a product of n ideals of the J_i 's equals to zero, which is the desired contradiction.

Suppose that $\varphi(J_1, \ldots, J_{n+1}) = \sum_{i=1}^{n+1} n_j = n+1$. Then for every $j = 1, \ldots, n+1$, there exists an element $a_j \in R$ such that $J_j = Ra_j$. Hence, $J_1 \cdots J_{n+1} = \{0\}$. Since $\{0\}$ is an *n*-absorbing ideal of R, there exists one product $a_1 \cdots \widehat{a_k} \cdots a_{n+1} = \{0\}$ and hence $J_1 \cdots \widehat{J_k} \cdots J_{n+1} = \{0\}$.

Now, assume that whenever $L_1L_2\cdots L_{n+1} = \{0\}$ for some ideals L_1,\ldots,L_{n+1} of R and $\varphi(L_1,\ldots,L_{n+1}) < \varphi(J_1,\ldots,J_{n+1})$, there exists a $k \in \{1,\ldots,n+1\}$ such that $L_1\cdots \widehat{L_k}\cdots L_{n+1} = \{0\}$. Since $\sum_{j=1}^{n+1} n_j > n+1$, without loss of generality, suppose $n_1 > 1$, and let $a_1 \in J_1$. Then $a_1J_2\cdots J_{n+1} = \{0\}$. Let $L_1 = Ra_1$, and for $j \geq 2$, let $L_j = J_j$. Hence $L_1\cdots L_{n+1} = \{0\}$ and $\varphi(L_1,\ldots,L_{n+1}) = 1 + \sum_{k=2}^{n+1} n_k < \varphi(J_1,\ldots,J_{n+1})$. By induction there exists some $j \in \{2,\ldots,n+1\}$ such that $L_1J_2\cdots \widehat{J_j}\cdots J_{n+1} = \{0\}$. Since $J_2\cdots J_{n+1} \neq \{0\}$ by hypothesis, we have $a_1 \in \operatorname{ann}(Q_j)$, where $Q_j = J_2\cdots \widehat{J_j}\cdots J_{n+1}$. Thus, $J_1 \subset \bigcup_{i=1}^{n+1} \operatorname{ann}(Q_j)$. Since R is a u-ring, there exists $j \in \{1,\ldots,n+1\}$ such that $J_1 \subset \operatorname{ann}(Q_j)$. Thus, $J_1 \ldots \widehat{J_j} \cdots J_{n+1} = \{0\}$, a contradiction. Therefore, there exists $j \in \{1,\ldots,n+1\}$ such that $I_1 \cdots \widehat{I_j} \cdots I_{n+1}$ equals to zero. Hence $\{0\}$ is a strongly n-absorbing of R.

Theorem 5.4. Let R be a commutative u-ring. Then R satisfies Conjecture one, that is every n-absorbing ideal of R is a strongly n-absorbing ideal of R.

Proof. Let R be a commutative *u*-ring. Suppose that I is a proper *n*-absorbing ideal of R. Then the quotient ring R/I is a *u*-ring by [30, Proposition 1.3] and $\{0\}$ is an *n*-absorbing ideal of R/I. Therefore, $\{0\}$ is a strongly *n*-absorbing of R/I by Lemma 5.3. Hence I is a strongly *n*-absorbing ideal of R.

We recall from [30] that a ring A is called a um-ring if whenever an R-module equal to a finite union of submodules must be equal to one of them.

Remark 5.5. Let R be a commutative ring and assume that R contains an infinite set S such that x - y is a unit for all $x \neq y$ in S. Then R is a *um*-ring by [30, Proposition 1.7]. It is shown [30, Theorem 2.3] that a ring R is a *um*-ring if and only if R/M is infinite for every maximal ideal M of R. It is shown [30, Theorem 2.6] that a ring R is an *u*-ring if and only if R/M is infinite or R_M is a Bezout ring for every maximal ideal M of R. Hence in view of [30, Theorem 2.3] and [30, Theorem 2.6], we conclude that every *um*-ring is a *u*-ring. The converse is not true, for let $R = \mathbb{Z}$. Then R is a *u*-ring. Since R/M is finite for every maximal ideal M of R, we conclude that R is not a *um*-ring.

In view of Remark 5.5, we have the following result.

Theorem 5.6. Let R be a um-ring. Then R is a u-ring.

The proof of the following result is similar to the proof of [30, Proposition 1.7].

Theorem 5.7. Let R be a commutative ring with $1 \neq 0$, n be a positive integer, and I be a proper ideal of R. Suppose that R contains an infinite set S such that x - y is a unit for all $x \neq y$ in S. Then R is a u-ring, and hence I is a strongly n-absorbing of R if and only if I is an n-absorbing ideal of R.

Proof. Suppose that R contains an infinite set S such that x - y is a unit for all $x \neq y$ in S. We show that R is a u-ring. Deny. Let I be an ideal of R and $p \geq 1$ be an integer such that $I \subset \bigcup_{i=1}^{p} I_i$, and suppose that for every $i \in \{1, \ldots, p\}$, we have $I \nsubseteq I_i$. We may assume that for each $i \in \{1, \ldots, p\}$, we have $I \nsubseteq \bigcup_{j\neq i} I_j$. Hence for each $1 \leq i \leq 2$, there exists $a_i \in I$ such that $a_i \notin \bigcup_{j\neq i} I_j$. Consider the set $H = \{a_1 + xa_2 \mid x \in S\}$. Then for every $x \in S$, we have $a_1 + xa_2 \in I$ and $a_1 + xa_2 \notin I_2$. Since $H \subseteq I$ and $H \cap I_2 = \emptyset$, we have $H \subset \bigcup_{j\neq 2} I_j$. Since H is infinite, there exist $x_1 \neq x_2$ in S such that $a_1 + x_1a_2$ and $a_1 + x_2a_2 \in I_i$ for some $i \neq 2$. Hence $(x_1 - x_2)a_2 \in I_i$, and thus $a_2 \in I_i$, which is a contradiction. Thus, R is a u-ring.

Remark 5.8. One can give an alternative proof of Theorem 5.7. Note that since R contains an infinite set S such that x - y is a unit for all $x \neq y$ in S, we conclude that R is a *um*-ring by [30, Proposition 1.7]. Hence R is a *u*-ring by Theorem 5.6.

Theorem 5.9. Let A be a u-domain with quotient field K, M be a K-vector space, and R = A(+)M. Then Conjecture one holds in R. **Proof.** Since A satisfies Conjecture one by Theorem 5.4, we conclude that R satisfies Conjecture one by Theorem 3.4.

The following is an example of a ring that is not a u-ring but it satisfies Conjecture one.

Example 5.10. Let $R = \mathbb{Z}_3(+)\mathbb{Z}_3[X]$. Then R satisfies Conjecture one by Theorem 5.9. It is clear that $M = \{0\}(+)\mathbb{Z}_3[X]$ is the only maximum ideal of R. Since neither R/M is infinite (note that $R/M \cong \mathbb{Z}_3$) nor R_M (note that $R_M = R$) is a Bezout ring, we conclude that R is not a u-ring by [30, Theorem 2.6]. Note that R is not a u-ring by Theorem 5.6.

Theorem 5.11. Let A be a commutative um-ring, M be an A-module, and R = A(+)M. Then Conjecture one holds in R.

Proof. Let H be a maximal ideal of R. Then H = L(+)M for some maximal ideal L of A. Since $R/H \cong A/L$ and A is a um-ring, we conclude that A/L is infinite, and thus R/H is infinite. Hence R is a um-ring by [30, Theorem 2.3]. Thus, R is a u-ring by Theorem 5.6. Hence R satisfies Conjecture one by Theorem 5.4.

6. (m, n)-Closed Ideals in Trivial Ring Extension

Let R be a commutative ring with $1 \neq 0$. We recall from [3] that a proper ideal I of R is called an (m, n)-closed ideal if $x^m \in I$ for $x \in R$ implies $x^n \in I$.

Theorem 6.1. Let A be a ring, M be an R-module, and R = A(+)M. Suppose that J = I(+)N is a proper ideal of R, where I is a proper ideal of A and N is a submodule of M such that $IM \subseteq N$. If I is an (m, n)-closed ideal of A for some integers 0 < n < m, then J is an (m, n + 1)-closed ideal of R.

Proof. Suppose that I is an (m, n)-closed ideal of A for some integers 0 < n < m. Let $x = (a, c) \in R$ and suppose that $x^m = (a^m, ma^{m-1}c) \in J$. Since I is an (m, n)-closed ideal of A, we conclude that $(a^{n+1}, (n+1)a^nc) = x^{n+1} \in J$. Thus J is an (m, n+1)-closed ideal of R.

In view of Theorem 6.1, the following is an example of an (3, 2)-closed ideal I of Z but the proper ideal J = I(+)I of R = Z(+)Z is not an (3, 2)-closed ideal of R.

Example 6.2. Let R = Z(+)Z, $p \neq 2$ be a positive prime number of Z, $I = p^4Z$ a proper ideal of Z, and J = I(+)I. Then J is a proper ideal of R and I is an (3, 2)-closed ideal of Z by [3, Corollary 3.3]. Let $x = (p^2, p) \in R$. Then $x^3 = (p^6, 3p^5) \in J$. Since $p \neq 2$, we have $x^2 = (p^4, 2p^3) \notin J$.

Lemma 6.3. Let A be a ring, M be an R-module, and R = A(+)M. Suppose that J = I(+)N is a proper ideal of R, where I is an (m, n)-closed ideal of A for some integers 0 < n < m, and N is a submodule of M such that $IM \subseteq N$. Let $x = (a, c) \in R$ for some $a \in A$ and $c \in M$. Then $x^m \in J$ if and only if $a^m \in I$.

Proof. Suppose that $x^m = (a^m, ma^{m-1}c) \in J$. Then it is clear that $a^m \in I$.

Conversely, suppose that $a^m \in I$. Since I is an (m, n)-closed ideal of R, $a^n \in I$. Since $n \leq m-1$, we conclude that $a^{m-1} \in I$. Since $IM \subseteq N$ and $a^{m-1} \in I$, we conclude that $x^m = (a^m, ma^{m-1}c) \in J$.

Theorem 6.4. Let A be a ring, M be an R-module, and R = A(+)M. Suppose that J = I(+)N is a proper ideal of R, where I is a proper ideal of A and N is a submodule of M such that $IM \subseteq N$. Let 0 < n < m be integers. The following statements are equivalent:

- (1) J is an (m, n)-closed ideal of R.
- (2) I is an (m, n)-closed ideal of A and whenever $a^m \in I$ for some $a \in A$ implies $na^{n-1}M \subseteq N$.

Proof. (1) \Rightarrow (2). Suppose that J is an (m, n)-closed ideal of R. Then it is clear that I is an (m, n)-closed ideal of A. Assume that $a^m \in I$ for some $a \in A$. Let $c \in M$ and x = (a, c). Since $a^m \in I$, we have $x^m \in R$ by Lemma 6.3. Since J is an (m, n)-closed ideal of R, we conclude that $x^n = (a^n, na^{n-1}c) \in R$. Thus, $na^{n-1}M \subseteq N$.

 $(2) \Rightarrow (1)$. Suppose that I is an (m, n)-closed ideal of A and whenever $a^m \in I$ for some $a \in A$ implies $na^{n-1}M \subseteq N$. Let $x = (a, c) \in R$ for some $a \in A$ and $c \in M$ and suppose that $x^m = (a^m, ma^{m-1}c) \in J$. Since $a^m \in I$ and I is an (m, n)-closed ideal of A, we conclude that $a^n \in A$ and $na^{n-1}c \in N$. Thus, $x^n = (a^n, na^{n-1}c) \in J$. Hence J is an (m, n)-closed ideal of R.

Theorem 6.5. Let A be a ring, M be an R-module, m and n integers with $1 \le n < m$, I be a proper ideal of A, and R = A(+)M. Suppose that $char(A) \mid n$. Then the following statements are equivalent:

- (1) J = I(+)N is an (m, n)-closed ideal of R for every submodule N of M where $IM \subseteq N$.
- (2) I is an (m, n)-closed ideal of A.

Proof. (1) \Rightarrow (2). It is clear by Theorem 6.4.

 $(2) \Rightarrow (1)$. Let N be a submodule of M such that $IM \subseteq N$. Since $char(A) \mid n$, we conclude that whenever $a^m \in I$ for some $a \in A$ implies $na^{n-1}M = 0_M \subseteq N$, where 0_m is the additive identity of M. Thus, J = I(+)N is an (m, n)-closed ideal of R by Theorem 6.4.

Theorem 6.6. Let D be an integral domain, R = D(+)D, m and n integers with $1 \le n < m$, and $I = p^k D$, where p is a prime element of D and k is a positive integer. Suppose that m > k and $\operatorname{char}(D) \ne n$. Then the following statements are equivalent:

(1) $J = I(+)p^i D$ is an (m, n)-closed ideal of R for some integer $i \ge 1$.

(2) One of the following three cases must hold:

- (a) k < n < m and $i \leq k$.
- (b) n = k, and $1 \le i < k$.
- (c) n = i = k, and $p \mid k \cdot 1_D$ (in D), where 1_D is the identity of D.

Proof. (1) \Rightarrow (2). Suppose that $J = I(+)p^i D$ is an (m, n)-closed ideal of R for some integer $i \ge 1$. Since J is an ideal of R, we conclude that $I \subseteq p^i D$. Hence $i \le k$. Since $J = I(+)p^i D$ is an (m, n)-closed ideal of R, we conclude that I is an (m, n)closed ideal of D and whenever $a^m \in I$ for some $a \in D$ implies $na^{n-1}D \subseteq p^i D$ by Theorem 6.4. Since m > k, $p^m \in I$ and hence $p^n \in I$ and $np^{n-1}D \subseteq p^i D$. In particular, $np^{n-1} \in p^i D$. Since $p^n \in I$, we conclude that $n \ge k$. Suppose that n = k. Then $np^{n-1} = kp^{k-1} \in p^i D$ if and only if either $1 \le i < k$ or i = k and $p \mid k \cdot 1_D$.

(2) \Rightarrow (1). In view of proof (1) \Rightarrow (2) above, one can easily verify that if (a) or (b) or (c) holds, then I is an (m, n)-closed ideal of D and whenever $a^m \in I$ for some $a \in D$ implies $na^{n-1}D \subseteq p^iD$. Hence J is an (m, n)-closed ideal of R by Theorem 6.4.

Definition 6.7. Let p be a prime element of an integral domain D. Suppose that $p^{w} \mid d$ for some $d \in D$ and a positive integer w but $p^{w+1} \nmid d$. Then we write $p^{w} \parallel d$.

Theorem 6.8. Let D be an integral domain, R = D(+)D, m and n integers with $1 \le n < m$, and $I = p^k D$, where p is a prime element of D and k is a positive integer. Suppose that m < k and $char(D) \ne n$. Let $v = \lceil \frac{k}{m} \rceil$ and $u = \lceil \frac{k}{v} \rceil$. Then the following statements are equivalent:

- (1) $J = I(+)p^i D$ is an (m, n)-closed ideal of R for some integer $i \ge 1$.
- (2) One of the following three cases must hold:
 - (a) u < n < m and $i \leq k$.
 - (b) $u = n, p \nmid n \cdot 1_D$ (in D), and $i \le v(n-1) < k$.
 - (c) $u = n, p^w || n \cdot 1_D$ (in D), and $i \le \min\{v(n-1) + w, k\}$.

Proof. (1) \Rightarrow (2). Suppose that $J = I(+)p^i D$ is an (m, n)-closed ideal of R for some integer $i \ge 1$. Since J is an ideal of R, we conclude that $I \subseteq p^i D$. Hence $i \le k$. It is clear that $v = \lceil \frac{k}{m} \rceil$ is the smallest positive integer where $(p^v)^m \in I$. Also, it is clear that u is the smallest positive integer where $(p^v)^u \in I$. Since $J = I(+)p^i D$ is an (m, n)-closed ideal of R and $1 \le n < m$, we conclude that $u \le n < m$. Since $J = I(+)p^i D$ is an (m, n)-closed ideal of R, we conclude that I is an (m, n)closed ideal of D and whenever $a^m \in I$ for some $a \in D$ implies $na^{n-1}D \subseteq p^i D$ by Theorem 6.4. Hence since $(p^v)^m \in I$, we conclude that $n(p^v)^{n-1} \in p^i D$ by Theorem 6.4. If u < n < m, then $u \le n - 1$ and thus $n(p^v)^{n-1} \in p^k D = I$ (note that $(p^v)^u \in I)$ and $i \le k$. Suppose that n = u and $p \nmid n \cdot 1_D$ (in D). Since uis the smallest positive integer where $(p^v)^u \in I$ and $p \nmid n \cdot 1_D$, we conclude that v(n-1) < k and $n(p^v)^{n-1} \in p^i D$ if and only if $i \le v(n-1) < k$. Suppose that u = n and $p^w || n \cdot 1_D$ (in D). Since $i \le q$, we conclude that $n(p^v)^{n-1} \in p^i D$ if and only if $i \le \min\{v(n-1) + w, k\}$.

(2) \Rightarrow (1). In view of proof (1) \Rightarrow (2) above, one can easily verify that if (a) or (b) or (c) holds, then *I* is an (m, n)-closed ideal of *D* and whenever $a^m \in I$ for some $a \in D$ implies $na^{n-1}D \subseteq p^iD$. Hence *J* is an (m, n)-closed ideal of *R* by Theorem 6.4.

Let R be an integral domain, $I = p^k R$, where p is a prime element of R and k is a positive integer, and m and n be fixed positive integers with $1 \le n < m$. The authors in [3, Theorem 3.1] determined the set $\{k \in \mathbb{N} \mid p^k R \text{ is } (m, n)\text{-closed}\}$. We recall the following result.

Theorem 6.9 ([3, Theorem 3,1]). Let D be an integral domain, m and n integers with $1 \le n < m$, and $I = p^k D$, where p is a prime element of D and k is a positive integer. Then the following statements are equivalent:

- (1) I is an (m, n)-closed ideal of D.
- (2) If m = bn + c for integers b and c with $b \ge 2$ and $0 \le c \le n 1$, then $k \in \{1, \ldots, n\}$. If m = n + c for an integer c with $1 \le c \le n 1$, then $k \in \bigcup_{h=1}^{n} \{mi+h \mid i \in \mathbb{Z} \text{ and } 0 \le ic \le n h\}.$

In view of Theorems 6.6, 6.8 and 6.9, we have the following result.

Theorem 6.10. Let D be an integral domain, R = D(+)D, m and n integers with $1 \le n < m$, and $I = p^k D$, where p is a prime element of D and k is a positive integer. Suppose that char $(D) \ne n$. Then the following statements are equivalent:

- (1) $J = I(+)p^i D$ is an (m, n)-closed ideal of R for some integer $i \ge 1$.
- (2) If m = bn + c for integers b and c with $b \ge 2$ and $0 \le c \le n 1$, then $k \in \{1, ..., n\}$ and one of the following three cases must hold:
 - (a) k < n < m and $i \leq k$.
 - (b) n = k, and $1 \le i < k$.
 - (c) n = i = k, and $p \mid k \cdot 1_D$ (in D), where 1_D is the identity of D.

If m = n + c for an integer c with $1 \le c \le n - 1$, then $k \in \bigcup_{h=1}^{n} \{mi + h \mid i \in \mathbb{Z} and \ 0 \le ic \le n - h\}$ and one of the following three cases must hold: Let $v = \lceil \frac{k}{m} \rceil$ and $u = \lceil \frac{k}{v} \rceil$. Then

- (a) u < n < m and $i \leq k$.
- (b) $u = n, p \nmid n \cdot 1_D$ (in D), and $i \le v(n-1) < k$.
- (c) $u = n, p^w || n \cdot 1_D$ (in D), and $i \le \min\{v(n-1) + w, k\}$.

Proof. (1) \Rightarrow (2). Suppose that $J = I(+)p^i D$ is an (m, n)-closed ideal of R for some integer $i \ge 1$. Then I is an (m, n)-closed ideal of D by Theorem 6.4. Suppose that m = bn+c for integers b and c with $b \ge 2$ and $0 \le c \le n-1$. Then $k \in \{1, \ldots, n\}$ by Theorem 6.9. Hence m > k. Thus we are done by Theorem 6.6. Suppose that

m = n + c for an integer c with $1 \le c \le n - 1$. Then $k \in \bigcup_{h=1}^{n} \{mi + h \mid i \in \mathbb{Z} \text{ and } 0 \le ic \le n - h\}$ by Theorem 6.9. Thus, m < k. Hence we are done by Theorem 6.8.

(2) \Rightarrow (1). Suppose that $k \in \{1, \ldots, n\}$ and (a) or (b) or (c) holds. Since m > k, we are done by Theorem 6.6. Suppose that m = n + c for an integer c with $1 \le c \le n - 1$ and $k \in \bigcup_{h=1}^{n} \{mi + h \mid i \in \mathbb{Z} \text{ and } 0 \le ic \le n - h\}$ and (a) or (b) or (c) holds. Since m < k, we are done by Theorem 6.8.

In view of Theorems 6.1 and 6.9, we have the following result.

Theorem 6.11. Let D be an integral domain, $I = p^k D$, where p is a prime element of D and k is a positive integer, M be a D-module, R = D(+)M, J = I(+)N is a proper ideal of R, where N is a submodule of M such that $IM \subseteq N$, and m and n integers with $1 \le n < m$. Then the following statements are equivalent:

- (1) I is an (m, n)-closed ideal of D and J is an (m, n + 1)-closed ideal of R.
- (2) If m = bn + c for integers b and c with $b \ge 2$ and $0 \le c \le n 1$, then $k \in \{1, \ldots, n\}$. If m = n + c for an integer c with $1 \le c \le n 1$, then $k \in \bigcup_{h=1}^{n} \{mi+h \mid i \in \mathbb{Z} \text{ and } 0 \le ic \le n h\}.$

Proof. (1) \Rightarrow (2). Suppose that *I* is an (m, n)-closed ideal of *D* and *J* is an (m, n + 1)-closed ideal of *R*. Since *I* is an (m, n)-closed ideal of *D*, we are done by Theorem 6.9.

 $(2) \Rightarrow (1)$. By Theorem 6.9, I is an (m, n)-closed ideal of D. Hence J is an (m, n+1)-closed ideal of R by Theorem 6.1.

Theorem 6.12. Let A be an integral domain with quotient field K, M be a K-vector space, and R = A(+)M. Then the following statements are equivalent:

- (1) Every proper ideal of A is an (m, n)-closed ideal of A for some integers $1 \le n < m$.
- (2) Every proper ideal of R is an (m, n)-closed ideal of R for some integers $1 \le n < m$.

Proof. (1) \Rightarrow (2). Suppose that every proper ideal of A is an (m, n)-closed ideal of A for some integers $1 \leq n < m$. Let J be an ideal of R. Since M is a divisible A-module, we have J = I(+)M for some proper ideal I of A or $J = \{0\}(+)N$ for some A-submodule N of M by ([1, Corollary 3.4]). Suppose that J = I(+)M for some proper ideal I. Since I is an (m, n)-closed ideal of A for some integers $1 \leq n < m$, it is clear that J = I(+)M is an (m, n)-closed ideal of R. Suppose that $J = \{0\}(+)N$ for some A-submodule N of M. Since A is an integral domain, we have $J = \{0\}(+)N$ is an (m, 2)-closed ideal of R for every integer $m \geq 3$. Hence every proper ideal of R is an (m, n)-closed ideal of R for some integers $1 \leq n < m$.

 $(2) \Rightarrow (1)$. It is clear.

References

- D. D. Anderson and M. Winderes, Idealisation of a module, J. Comm. Algebra 1 (2009) 3–56.
- [2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646–1672.
- [3] D. F. Anderson and A. Badawi, On (m, n)-closed ideals of commutative rings, J. Algebra Appl. 16(1) (2017) 1750013, 21 pp.
- [4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417–429.
- [5] A. Badawi, U. Tekir and E. Yeikin, Generalizations of 2-absorbing primary ideals of commutative rings, *Turk. J. Math.* 40 (2016) 703–717.
- [6] A. Badawi, U. Tekir and E. Yeikin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015) 97–111.
- [7] A. Badawi, U. Tekir and E. Yeikin, On 2-absorbing primary ideals of commutative rings, Bull. Korean Math. Soc. 51 (2014) 1163–1173.
- [8] A. E. Becker, Results on n-absorbing ideals of commutative rings, M. S. thesis, University of Wisconsin–Milwaukee, Milwaukee, U. S. A. (2015).
- [9] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extension definided by Prüfer conditions, J. Pure Appl. Algebra 214 (2010) 53–60.
- [10] P. J. Cahen, M. Fontana, S. Frisch and S. Glaz, Open problems in commutative ring theory, *Commutative Algebra* (Springer, 2014), pp. 353-375.
- [11] F. Callialp, E. Yetkin and U. Tekir, On 2-absorbing primary and weakly 2-absorbing elements in multiplicative lattices, *Italian J. Pure Appl. Math.* 34 (2015) 263–276.
- [12] E. Y. Celikel, E. A. Ugurlu and G. Ulucak, On φ-2-absorbing elements in multiplicative lattices, *Palest. J. Math.* 5 (2016) 127–135.
- [13] E. Y. Celikel, E. A. Ugurlu and G. Ulucak, On φ-2-absorbing primary elements in multiplicative lattices, *Palest. J. Math.* 5 (2016) 136–146.
- [14] J. N. Chaudhari, 2-absorbing ideals in semirings, Int. J. Algebra 6 (2012) 265–270.
- [15] H. S. Seung Choi and A. Walker, The radical of an n-absorbing ideal (2016), arXiv:1610.10077 [math.AC].
- [16] A. Yousefian Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, *Semigroup Forum* 86 (2013) 83–91.
- [17] A. Yousefian Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, *Kyungpook Math. J.* 52 (2012) 91–97.
- [18] A. Yousefian Darani and H. Mostafanasab, Generalizations of semicoprime preradicals, Algebra Discrete Math. 21 (2016) 214–238.
- [19] A. Yousefian Darani and H. Mostafanasab, On 2-absorbing preradicals, J. Algebra Appl. 14 (2015) 22 pages.
- [20] A. Yousefian Darani and H. Mostafanasab, Co-2-absorbing preradicals and submodules, J. Algebra Appl. 14 (2015) 23 pages.
- [21] G. Donadze, The Anderson-Badawi conjecture for commutative algebras over infinite fields, *Indian J. Pure Appl. Math.* 47 (2016) 691–696.
- [22] M. Hamoda and A. E. Ashour, On graded n-absorbing submodules, Le Matematiche 70 (2015) 243–254.
- [23] J. A. Huckaba, *Commutative Rings with Zero Divisors* (Marcel Dekker, New York Basel, 1988).
- [24] C. Jayaram, U. Tekir and E. Yetkin, 2-absorbing and weakly 2-absorbing elements in multiplicative lattices, *Comm. Algebra* 42 (2014) 2338–2353.
- [25] P. Kumar, M. K. Dubey and P. Sarohe, On 2-absorbing primary ideals in commutative semirings, *Euro. J. Pure Appl. Math.* 9 (2016) 186–195.

- [26] P. Kumar, M. K. Dubey and P. Sarohe, Some results on 2-absorbing ideals in commutative semirings, J. Math. Appl. 38 (2015) 5–13.
- [27] A. Laradji, On n-absorbing rings and ideals, Colloquium Mathematicum 147 (2017) 265–273.
- [28] A. Malek, A. Hamed and A. Benhissi, 2-absorbing ideals in formal power series rings, *Palest. J. Math.* 6(2) (2017) 502–506.
- [29] P. Nasehpour, On the Anderson–Badawi $w_{R[X]}(I[X]) = w_R(I)$ conjecture, Arch. Math. Brno 52 (2016) 71–78.
- [30] P. Quartararo, JR. and H. S. Butts, Finite unions of ideals and modules, Proc. Am. Math. Soc. 52 (1975) 91–96.
- [31] S. Smach and S. Hizem, On Anderson–Badawi conjectures, *Beitr. Algebra Geom.*, doi: 10.1007/s13366-017-0343-9 (to appear).