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Let R be a commutative ring with 1 # 0. Recall that a proper ideal I of R is called a
2-absorbing ideal of R if a,b,c € R and abc € I, then ab € I or ac € I or bc € I. A
more general concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let
n > 1 be a positive integer. A proper ideal I of R is called an n-absorbing ideal of R if
ai,a2,...,an+1 € Rand aj,az - any1 € I, then there are n of the a;’s whose product
is in I. The concept of n-absorbing ideals is a generalization of the concept of prime
ideals (note that a prime ideal of R is a 1-absorbing ideal of R). Let m and n be integers
with 1 <n < m. A proper ideal I of R is called an (m,n)-closed ideal of R if whenever

™ ¢ I for some a € R implies a”™ € I. Let A be a commutative ring with 1 # 0 and
M be an A-module. In this paper, we study n-absorbing ideals and (m, n)-closed ideals
in the trivial ring extension of A by M (or idealization of M over A) that is denoted by
A(+)M.

Keywords: Prime ideal; radical ideal; 2-absorbing ideal; n-absorbing ideal; (m, n)-closed
ideal; trivial extension; idealization of a ring.

Mathematics Subject Classification 2010: 13A15, 13F05, 13G05

1. Introduction

We assume throughout that all rings are commutative with 1 # 0. Over the past
several years, there has been considerable attention in the literature to n-absorbing
ideals of commutative rings and their generalizations, for example see ([2H8], [[0H22]
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1950123-1


http://dx.doi.org/10.1142/S0219498819501238

J. Algebra Appl. 2019.18. Downloaded from www.worldscientific.com

by AMERICAN UNIVERSITY OF SHARJAH on 07/07/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Badawi, M. Issoual € N. Mahdou

[24-129, [31]). We recall from [4] that a proper ideal I of R is called a 2-absorbing
ideal of Rif a,b,c € R and abc € I, then ab € I or ac € I or be € I. A more general
concept than 2-absorbing ideals is the concept of n-absorbing ideals. Let n > 1 be
a positive integer. A proper ideal I of R is called an n-absorbing ideal of R as in
2] if a1,a9,...,an41 € Rand ay,az - ap41 € I, then there are n of the a;’s whose
product is in I. A proper ideal of R is called a strongly n-absorbing ideal of R as in
[2] if whenever I - - - I,,41 C I for ideals I, ..., I,,11 of R, then the product of some
n of the I j’-s is contained in I. The concept of n-absorbing ideals is a generalization
of the concept of prime ideals (note that a prime ideal of R is a 1-absorbing ideal
of R). Let m and n be the positive integers with 1 < n < m. We recall from [3]
that a proper ideal I of R is called an (m,n)-closed ideal of R if whenever o™ € I
for some a € I implies a™ € [.

Let A be a commutative ring and M be an A-module. The trivial ring extension
of A by M (or the idealization of M over A) is the ring R = A(+)M whose
underlying group is A x M with multiplication given by (a,b)(c,d) = (ac,ad +
be) (for example see [23]). In this paper, we study n-absorbing ideals, strongly
n-absorbing ideals, and (m,n)-closed ideals in the ring R = A(+)M. We start
by recalling some background materials. We say A is a quasilocal ring if A has
exactly one maximal ideal. If I is a primary ideal of a ring A with /I = P (a
prime ideal of A), then we say that I is a P-primary ideal of A. A prime ideal
P of a ring A is called divided if P C x for every x € A\P. Suppose that I
is a n-absorbing ideal of a ring A for some integer n > 1. Then, as in [2], we
put wa(I) = min{n € N|I is n-absorbing ideal of A}, and w¥(I) = min{n €
N|I is a strongly n-absorbing ideal of A}. Let A be a commutative ring and M
be an A-module. Then a submodule N of M is called a P-primary submodule of M
for some prime ideal P of A if (N : M) ={xz € A|zM C N} is a primary ideal of
A with /(N : M) ={a€ A|a"M C N for some integer n > 1} = P.

Let n > 1 be an integer and I be a proper ideal of A. Anderson and Badawi in
[2] (also see [10]) proposed the following three conjectures:

(1) Conjecture one: I is an n-absorbing ideal of A if and only if I is a strongly
n-absorbing ideal of A.

(2) Conjecture two: If I is an n-absorbing ideal of A, then (v/1)™ C I. An affirmative
answer to this conjecture is given in .

(3) Conjecture three: If I is an n-absorbing ideal of A, then I[X] is an n-absorbing
ideal of A[X].

In this paper, we study the validity of the above three conjectures in the ring
R=A(+)M.
2. n-Absorbing Ideals in Trivial Ring Extensions

We recall [l Corollary 3.4] that if A is an integral domain and M is a divisible
A-module, then every ideal of A(+4)M has the form I(+)M for some proper ideal
I of A or 0(+)N for some submodule N of M.
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In the following result, we collect some trivial facts about n-absorbing ideals
and (m,n)-closed ideals in R = A(4+)M and hence we omit the proof.

Theorem 2.1. Let A be a commutative ring, I be a proper ideal of A, M be an
A-module, and R = A(+)M. Then

(1) I is an n-absorbing ideal of A if and only if I(+)M is an n-absorbing ideal
of R.

(2) I is a strongly n-absorbing ideal of A if and only if If I(+)M is a strongly
n-absorbing of R.

(3) I is an (m,n)-closed ideal of A if and only if I(+)M is an (m,n)-closed ideal
of R.

Example 2.2. Let A be a field and M be an A-vector space. It is clear that R =
A(+)M is a quasilocal ring with the maximal is M = {0}(+)M. Since M? = {0},
we conclude that every ideal of R is a 2-absorbing ideal of R and hence a strongly
2-absorbing ideal of R by [4, Theorem 2.13]. Thus every ideal of R is a strongly
n-absorbing ideal of R for every n > 2.

We recall the following results.

Theorem 2.3. (1) ([I5]) If I is an n-absorbing ideal of a ring A for some integer
n > 1, then (VI)* C 1.

(2) (]2, Theorem 3.1]) Let P be a prime ideal of a ring A, and let I be a P-primary
ideal of A such that P™ C I for some positive integer n (for example, if A is a
Noetherian ring). Then I is an n-absorbing ideal of A.

(3) (|2, Theorem 6.6]) Let P be a prime ideal of a ring A, I be a P-primary ideal
of A, and n > 1 be an integer. Then I is a strongly n-absorbing ideal of A if
and only if P* C I and I is an n-absorbing ideal of R.

(4) (2, Theorem 3.2]) Let P be a divided prime ideal of A, and let I be an
n-absorbing ideal of A with /I = P. Then I is a P-primary ideal of A.

(5) (|2, Theorem 3.3]) Assume that \/{0} C P are divided prime ideals of A and
n > 1 be an integer. Then P™ is a P-primary ideal of A, and thus P™ is an
n-absorbing ideal of A.

In view of Theorem 23, we have the following result.

Corollary 2.4. (1) Let P be a prime ideal of a ring A, n > 1 be an integer, and
let I be a P-primary ideal of A. Then I is an n-absorbing ideal of A if and only
if P™ C I if and only if I is a strongly n-absorbing ideal of A.

(2) Let P be a divided prime ideal of A, and let I be a proper ideal of A with
VI = P. Then I is an n-absorbing ideal of A if and only if I is a P-primary
ideal of A and P™ C I if and only if I is a strongly n-absorbing ideal of A.

(3) Assume that \/{0} C P are divided prime ideals of A and n > 1 be an integer.
Then P™ is a strongly n-absorbing ideal of A.

1950123-3



J. Algebra Appl. 2019.18. Downloaded from www.worldscientific.com

by AMERICAN UNIVERSITY OF SHARJAH on 07/07/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

A. Badawi, M. Issoual € N. Mahdou

Proof. (1) By Theorem [23](1), (2), (3)], the claim follows.
(2) By Theorem [2.3[(4), (1), (2), (3)], the claim follows.
(3) By Theorem [23[(5), (2), (3)], the claim follows. O

Theorem 2.5. Let A be a commutative ring, M be an A-module, R = A(+)M,
n > 1 be an integer, I be a proper ideal of A, and N be a submodule of M such that
IM C N. Then:

(1)
(2)

(3)

If I(+)N s an n-absorbing ideal of R, then I is an n-absorbing ideal of A.
Let P be a prime ideal of A, I be a P-primary ideal of A, and N be a P-primary
submodule of M. Then I is an n-absorbing ideal of A if and only if I(+)N is
an n-absorbing ideal of R.

Let P be a prime ideal of A, I be a P-primary ideal of A, and N be a P-primary
submodule of M. Then I(+)N is an n-absorbing ideal of R if and only if I(+)N
s a strongly n-absorbing ideal of R.

Let P be a divided prime ideal of A, I be an n-absorbing ideal of A with /T = P,
and N be a P-primary submodule of M. Then I(4+)N is a strongly n-absorbing
ideal of R.

Assume that \/m C P are divided prime ideals of A such that P*"M C N.
If N is a P-primary submodule of M, then P™(+)N is a strongly n-absorbing
ideal of R.

Assume that A is a Prifer domain and let J = I(+)M. Then J = I(+)M is
an n-absorbing ideal of R if and only if J is a strongly n-absorbing ideal of R.
Moreover w(J) = w*(J).

Proof. (1) No comments.

(2)

(6)

Since [ is a P-primary ideal of A and N is a P-primary submodule of M, we con-
clude that I(+)N is a P(+)M-primary ideal of R by [I, Theorem 3.6]. Suppose
that I is an n-absorbing ideal of A. Then (v/I)" = P™ C I by Theorem EZ3(1).
Hence (/I(+)N)* = (P(+)M)™ C P"(+)N C I(+)N. Thus, I(+)N is an
n-absorbing ideal of R by Corollary Z4(1). Conversely, suppose that I(+)N
is an n-absorbing ideal of R. Then (y/I(+)N)" = (P(+)M)™ C I(+)N by
Theorem B.3(1). In particular, P* C I. Since I is a P-primary ideal of A and
P™ C P, we conclude that I is an n-absorbing ideal of A by Corollary R.4(1).
Since I(+)N is a P(+)M-primary ideal of R by Theorem 3.6] and
(VI(+)N)* = (P(+)M)"™ C I(+)N by Theorem R3(1), the claim follows by
Theorem [2.3](3).

By Corollary 2:42), we conclude that I is a P-primary ideal of A. Hence we
are done by (2) and (3).

By Theorem 23] we conclude that P™ is a P-primary ideal of A and hence an
n-absorbing ideal of A. Thus we are done by (2) and (3).

Suppose that J = I(4)M is an n-absorbing ideal of R. Then I is an n-absorbing
ideal of A. Since A is a Priifer domain, we conclude that I is a strongly
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n-absorbing ideal of A by [2, Corollary 6.9]. Hence J = I(+)M is s strongly
n-absorbing ideal of R. The converse is clear. It is clear that w(J) = w*(.J).
O

3. Conjecture One in Trivial Ring Extension

Let n > 1 be an integer and I be a proper ideal of a ring A. Anderson and Badawi
in [2] (also see [I0]) proposed the following conjecture.

Conjecture one: [ is an n-absorbing ideal of A if and only if I is a strongly
n-absorbing ideal of A.

Laradji in [27] proved that conjecture one holds in some rings that satisfy certain
conditions. In particular, he proved that Conjecture three implies Conjecture one.
We have the following lemma.

Lemma 3.1. Let A be an integral domain with quotient field K, M be a K -vector
space, F be a K -subspace of M, and R = A(+)M. Then J = {0}(+)F is a strongly
2-absorbing ideal of R, and thus J is a strongly n-absorbing ideal of R for every
n > 2.

Proof. First, we show that J is a 2-absorbing ideal of R. Let z; = (a;,¢;) € R,
where 1 < ¢ < 3. Suppose that z1zex3 € {0}(+)F. Since A is an integral domain,
we may assume that az = 0. Suppose that ajas = 0. Then z1z3 € J or xox3 € J.
Suppose that ajas # 0. Then zizow3 = (0,a1a2e3). Since F' is a K-subspace of
M, we conclude that a;lafl(alageg) = e3 € F. Hence z3 = (0,e3) € J, and thus
x123 € J. Hence J is a 2-absorbing ideal of R. Thus, J is a strongly 2-absorbing
ideal of R by [4] Theorem 2.13], and hence J is a strongly n-absorbing ideal of R
for every n > 2. O

Theorem 3.2. Let A be an integral domain with quotient field K, M be a K -vector
space, F be an A-submodule of M, and R = A(+)M. Then {0}(+)F is an
n-absorbing ideal of R for some n > 2 if and only if F is a K-subspace of M.

Proof. Suppose that J = {0}(+)F is an n-absorbing ideal of R for some n > 2.
Let a be a nonzero element of A and f € F. We show %f € F. Let x = (a,0),y =
(0, ain) € R. Then 2"y = (0, f) € J. Since a # 0 and J is an n-absorbing ideal
of R, we conclude that "~y = (0, %) € J. Thus, 2f € F. Now let h € K and
veEF. Thenh:%erorsomeb,ceAwithc;éO. Since v € F and F is an
A-submodule of M, we conclude that hv = %v € F. Thus, F is a K-subspace of
M. The converse is clear by Lemma [3.1] O

Corollary 3.3. Let A be an integral domain that is not a field with quotient field
K, and R = A(+)K. Then J = {0}(+)A is not an n-absorbing ideal of R for every
n>1.
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Proof. Since A is not a field, we conclude that A is not a K-subspace of K. Hence
we are done by Theorem B2 |

Theorem 3.4. Let A be an integral domain with quotient field K, M be a K -vector
space, and R = A(+)M. Then Conjecture one holds in R if and only if Conjecture
one holds in A.

Proof. First, observe that M is a divisible A-module. Hence every ideal of R =
A(+)M has the form I(+)M for some proper ideal I of A or 0(+)N for some
submodule N of M by [T, Corollary 3.4].

Suppose that Conjecture one holds in R. Let I be a proper n-absorbing ideal of
A for some integer n > 1. Then J = I(+)M is a n-absorbing ideal of R = A(+)M,
and hence a strongly m-absorbing ideal R by hypothesis. Thus, I is a strongly
n-absorbing ideal of A by Theorem ZT)(2).

Conversely, suppose that Conjecture one holds in A. Let J be a proper
n-absorbing ideal of R = A(+)M for some n > 1. Hence J is the form I(+)M
where I is a proper ideal of A or 0(+)F where F is a K-subspace of M.

Case 1. J = I(+)M, where I is a proper ideal of A. Since J is an n-absorbing
ideal of R, we conclude that I is an n-absorbing ideal of A by Theorem 2T[1), and
hence [ is a strongly n-absorbing ideal of A by hypothesis. Thus, J = I(4+)M is a
strongly n-absorbing ideal of R = A(+)M by Theorem 21)2).

Case 2. J = {0}(+)F, where F is an A-submodule of M. If n = 1, then FF' = M
and we are done. Hence assume that n > 2. Since J is an n-absorbing ideal of R,
we conclude that F' is a K-subspace of M by Theorem [B.2] Hence J is a strongly
n-absorbing ideal of R for every n > 2 by Lemma[3]l Thus, Conjecture one holds
in R=A(+)M. O

Corollary 3.5. Let A be a Priifer domain with quotient field K, M be K-vector
space, and R = D(+)M. Then Conjecture one holds in R.

Proof. Since A is a Priifer domain, Conjecture one holds in A by [2l, Corollary 6.9].
Thus Conjecture one holds in R by Theorem [3.4] O

We recall the following result.

Theorem 3.6 ([2, Corollary 6.8]). Let R be a Noetherian ring. Then every
proper ideal of R is a strongly n-absorbing ideal of R for some positive integer n.

Theorem 3.7. Let A be a Noetherian ring, M be an A-module, R = A(+)M, and
I be a proper ideal of A. Then J = I(+)M is a strongly n-absorbing ideal of R for
some positive integer n.

Proof. Since [ is a strongly n-absorbing ideal of A for some positive integer n by
Theorem B8, we conclude that J = I(4)M is a strongly n-absorbing ideal of R.
O
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Theorem 3.8. Let A be a Noetherian ring, M be a finitely generated A-module,
and R = A(+)M. Then every ideal of R is a strongly n-absorbing ideal of R for
some positive integer n.

Proof. Since A be a Noetherian ring and M is a finitely generated A-module, we
conclude that R is a Noetherian ring by [1I Theorem 4.8]. Hence the claim follows
from Theorem B.6 O

Question 1. In view of Theorem El Amin El Kaidi asked the following
question: Let A be a ring and assume that every ideal of A is an n-absorbing
ideal of R for some integer n > 1. Does it imply that A is a Noetherian ring?

The following example gives a negative answer to the above question.

Example 3.9. Let A C K be fields such that K is not a finitely generated
A-module (for example, let A = Q and K = R) and R = A(+)K. Since R is a
quasilocal ring with maximal ideal M = {0}(+)K and M? = {(0,0)}, we conclude
that every ideal of R a 2-absorbing ideal of R (and hence every ideal of R is a
strongly n-absorbing ideal of R for every n > 2 by [4, Theorem 2.13]). Since K
is not a finitely generated A-module, we conclude that {0}(+)K is not a finitely
generated of R. Thus R is not a Noetherian ring.

Remark 3.10. Let R be a ring and n a positive integer such that every proper ideal
of R is an n-absorbing ideal of R. Then by [2, Theorem 5.9], we have dim(R) = 0
and R has at most n maximal ideals.

We have the following result.

Theorem 3.11. Let A be an integral domain with quotient field K, M be a finite
dimensional vector space over K, and R = A(+)M. Then every proper ideal of R
is an n-absorbing ideal of R for some n > 1 if and only if A = K.

Proof. Suppose that A = K. Since M is a finite dimensional vector space over
K, we conclude that R a Noetherian ring by [T, Theorem 4.8]. Hence every proper
ideal of R is an n-absorbing ideal of R for some n > 1 by Theorem B.6] Conversely,
suppose that every proper ideal of R is an n-absorbing ideal of R for some n > 1.
Since M is a finite dimensional vector space over K, we may assume that M =
K x -+ x K (m times, where m = dimg(M) < o0). Hence N = A x --- x A
is a an A-submodule of M and J = {0} x N is a 2-absorbing ideal of R. Since
J = {0} x N is a 2-absorbing ideal of R, we conclude that N is a K-subspace of M
by Theorem Thus, A = K. |

In light of Theorems and [3.17] we have the following result.

Corollary 3.12. Let A be an integral domain with quotient field K, M be a finite
dimensional vector space over K, and R = A(+)M. Then the following statements
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are equivalent.

(1) Ewvery proper ideal of R is a strongly n-absorbing ideal of R for some n > 1.
(2) Every proper ideal of R is an n-absorbing ideal of R for some n > 1.

(3) A

(4) A is a Noetheman Ting.

(5) R is a Noetherian ring.

Theorem 3.13. Let A be a Noetherian domain with quotient field K, M be a
K -vector space, and R = A(+)M. Then a proper ideal J of R is an n-absorbing
ideal of R for some n > 1 if and only if J is a strongly m-absorbing ideal of R for
some m > 1.

Proof. If n =1 orm = 1. Then J is a prime ideal of R, and hence the claim is clear.
Let J be a proper ideal of R. Since M is a divisible A-module, we conclude that
J = I(+)M for some proper ideal I of A or J = {0}(+)F for some A-submodule
F of M by [, Corollary 3.4]. Suppose that J is n-absorbing ideal of R for some
n > 2. Assume that J = I(+)M for some proper ideal I of A. Since I is a strongly
m-absorbing ideal of A for some positive integer m by Theorem [3.6] we conclude
that J = I(+)M is a strongly m-absorbing ideal of R. Suppose that J = {0}(+)F
for some A-submodule F' of M. Then F' is a K-subspace of M by Theorem B2
Thus J is a strongly k-absorbing ideal of R for every integer k > 2 by Lemma Bl
The converse is clear. |

4. Conjecture Three in Trivial Ring Extension

Let A be a commutative ring, and M an A-module, let R = A(+)M, we know
(A(+)M)[X] is naturally isomorphic to A[X](+)M[X]. If I is a ideal of A, then
(I(+)M)[X] is naturally isomorphic to I[X](+)M[X].

We recall the following result.

Theorem 4.1 (|2, Theorem 4.15]). Let I be a proper ideal of a ring A. Then
I[X] is a 2-absorbing ideal of R[X| if and only if I is a 2-absorbing ideal of R.

Theorem 4.2. Let A be an integral domain with quotient field K, M be a K -vector
space, and R = A(+)M . Then Conjecture three holds in R if and only if Conjecture
three holds in A.

Proof. Suppose the Conjecture three holds in A. Let J be a proper n-absorbing
ideal of R for some n > 1. Hence J = I(+)M for some proper ideal I of
A or J = {0}(+)F for some K-subspace F of M by [I, Corollary 3.4] and
Theorem B2

Case 1. Suppose that J = I(+)M for some proper ideal I of A. Then I is an
n-absorbing ideal of A. Thus I[X] is an n-absorbing ideal of A[X] by hypoth-
esis. Hence wa(I) = wapx)(I[X]). Since J[X] is isomorphic to I[X](+)M[X],
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we conclude that J[X] is an n-absorbing ideal of R[X]. Since wgx)(J[X]) =
w x| () mx]TX](F)MX]) = wax)(I[X]) = wa(Il). Hence wgx)(J[X]) =
wR(J).

Case 2. Suppose that J = 0(+)F for some K-subspace F of M.
Since J is a 2-absorbing ideal of R, we conclude that J[X] is a 2-absorbing
absorbing ideal of R[X] by Theorem L1l Hence Conjecture three holds in R.
Conversely, suppose that Conjecture three holds in R. Let I be an n-absorbing
ideal of A. Then I(+)M is n-absorbing ideal of R. Hence (I(+)M )[X] is n-absorbing
ideal of R[X]| by hypothesis. Since (I(+)M)[X] = I[X](+)M[X], we conclude that
I[X] is an n-absorbing ideal of A[X]. O

Laradji [27, Corollary 2.11] showed that Conjecture three holds in arithmetical
rings. Since a Priifer domain is both arithmetical and Gaussian ring, the following
result is an immediate consequence of |27, Corollary 2.11] and [31] Theorem 2.6].

Lemma 4.3 ([27, Corollary 2.11] and Theorem 2.6]). Let A be a Priifer
domain and I be a proper n-absorbing ideal of A for some integer n > 1. Then I[X]
is an n-absorbing ideal of A[X].

In the following result, we construct rings with zero-divisors that satisfy Con-
jecture three but they do not need be arithmetical rings.

Theorem 4.4. Let A be a Priifer domain with quotient field K, M be K-vector
space, n be a positive integer, and J be a proper ideal of R = A(+)M (note that
if M = K[X], then R is not an arithmetical ring by [9, Theorem 2.1(2)]). If J is
an n-absorbing ideal of R, then J[X] is an n-absorbing ideal of R[X] and wr(J) =
wrix)(J[X]).

Proof. Since A is a Priifer domain, Conjecture three holds in A by Lemma
Thus Conjecture three holds in R by Theorem 2] Thus, If J is an n-absorbing ideal
of R, then J[X] is an n-absorbing ideal of R[X] and wr(J) = wgx)(J[X]). O

In the following example, we construct a non-arithmetical ring that satisfies
Conjecture three.

Example 4.5. Let A be a Priifer domain with quotient field K, M = K[X], and
R = A(+)M. Then:

(1) R satisfies Conjecture three by Theorem F4
(2) R is a non-arithmetical ring by [9, Theorem 2.1(2)].

Remark 4.6. Let I be a proper ideal of a ring A and n > 1. It is shown [2]
Theorem 6.1] that if I is a strongly n-absorbing ideal of A, then (vI)™ C I. Tt is
shown [27, Proposition 2.9(1)] that if I[X] is an n-absorbing ideal of A[X], then I
is a strongly n-absorbing ideal of A. It is shown [27] Corollary 2.11] that if I is an
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n-absorbing ideal of an arithmetical ring A, then I[X] is an n-absorbing ideal of
A[X]. Hence if A is an arithmetical ring, then all three Conjectures hold in A.

In the following result, we construct rings with zero-divisors that satisfy all three
conjectures but they do not need be arithmetical rings.

Theorem 4.7. Let A be a Priifer domain with quotient field K, M be K -vector
space, n be a positive integer, and R = A(+)M (note that if M = K[X], then R is
not an arithmetical ring by [9, Theorem 2.1(2)]). Suppose that J is an n-absorbing
tdeal of R. Then the following statements hold:

(1) J is a strongly n-absorbing ideal of R.
(2) J[X] is an n-absorbing ideal of R.
(3) (V)™ CJ.

Proof. (1) It is clear by Corollary BBl
(2) It is clear by Theorem [1.41
(3) It is clear by [I5]. O

5. Conjecture One in u-Rings

We recall from that commutative ring R is called a wu-ring if whenever an
ideal I of R is contained in a finite union of ideals of R, then I is contained in at
least one of those ideals. It is known that every Bezout ring is a u-ring and every
Priifer domain is a u-domain. In [31], Theorem 2.4], Smach and Hizem showed that
Conjecture one holds in u-rings. In this section, we propose a proof of this result
that is different from that in [31, Theorem 2.4]. We need the following notation.
Let R be a commutative ring. If z1,...,2, € R, then z1,...,7) -z, denotes
the product xy - - -z, that omits x. Similarly, if I1,..., [, 11 are ideals of R, then
I --- IAk -+ I,41 denotes the product Iy,..., I, that omits I;. We start with the
following lemmas.

Lemma 5.1. Let R be a commutative ring. Suppose there are ideals I, ..., I 11 of
R such that I - - - .In11 = {0} and no product of n of the I;’s is equal to {0}. Then
there are finitely generated ideals Jy, ..., Jo11 of R such that Jy -+ J,y1 = {0} and
no product of n of the J;'s is equal to {0}.

Proof. Suppose there are ideals I,. .., I,41 of R such that Iy ---.I,11 = {0} and
no product of n of the I;’s is equal to {0}.
Let j € {1,...,n+ 1}. Since H"+1 I; # {0} for all i # j, there exist a; ; € I;

i=1,i#j
such that H?:ll,#j a;; #{0}. Let J; = (a14,...,G;;,-..,an+1,;) the ideal gener-
ated by {a;;,i # j,i = 1,...,n + 1}. Since J; C I;, we have J; --- J41 = {0}.
Thus, H?;l,#j Ji # {0}, for every j € {1,...,n+ 1}, as desired. O
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Lemma 5.2. Suppose that in any ring {0} is a strongly n-absorbing ideal if and
only if {0} is an n-absorbing ideal. Then every n-absorbing ideal in an arbitrary
ring R is a strongly n-absorbing ideal of R.

Proof. Suppose I is n-absorbing ideal in a ring A and let the canonical homomor-
phism f : R — R/I. Then {0} is an n-absorbing ideal of A" = A/I by [2, The-
orem 4.2] and thus {0} is a strongly n-absorbing ideal of A’. Let I,..., [,+1 are
ideals of A such that [[/5' I; € I, then [/} f(I;) = {0}. Since {0} is a strongly
n-absorbing ideal of A’, there exist j € {1,...,n+1} such that H?:ll,#j f(L;) ={0}
and so H?:ﬁ#j I; C I. Therefore, I is a strongly n-absorbing ideal of A. |
Lemma 5.3. Let R be a commutative u-ring such that {0} is an n-absorbing ideal.
Then {0} is a strongly n-absorbing of R.

Proof. Let Iy,...,I,11 be ideals of R such that Iy ---I,y; = {0}. Assume that
there is no product of n ideals of the I;’s equals to zero. By Lemma B2 there
are finitely generated ideals Ji, ..., J,4+1 of R such that Jy---J,4+1 = {0} and no
product of n of the J;’s equals to {0} Let n; be the minimal number of generators
for Jj, and o(J1, ..., Jny1) = Zl 1 n;. Itis clear that o(J1, ..., Jot1) € {n+1,...,
n(n+1)}.

We will show by induction that there exists a product of n ideals of the J;’s
equals to zero, which is the desired contradiction.

Suppose that o(J1,...,Jpt1) = Z?Jrll n; = n+ 1. Then for every j =1,...,
n+1, there exists an element a; € R such that J; = Ra;. Hence, J; - - - .J,41 = {0}.
Since {0} is an n-absorbing ideal of R, there exists one product aj -+ @y - - Gpy1 =
{0} and hence J; - ~-j;-~-Jn+1 = {0}.

Now, assume that whenever LyLg -+« L,+; = {0} for some ideals L1, ..., Lyt+1
of Rand ¢(L1,...,Lpt1) < @o(J1,... Jn+1) there exists a k € {1,...,n+ 1} such
that Ly Ly L1 = {0}. Since Z 1 n; > n+ 1, without loss of generality,
suppose n1 > 1, and let a; € Ji. Then arJo - Jpp1 = {0}. Let Ly = Ray, and
for j > 2, let Ly = J;. Hence Ly---Ly11 = {0} and ¢(L1,...,Lpq1) = 1 +
Z?’; ni < @(J1,...,JJut1). By induction there exists some j € {2,...,n + 1}
such that LqJs - -~fj~-~Jn+1 = {0}. Since Jy---.Juy1 # {0} by hypothesis, we
have a; € ann(Q;), where Q; = Jy -+ J; -+ Juy1. Thus, J; C U ann(Q;). Since
R is a wu-ring, there exists j € {1,...,n + 1} such that J; C ann(Q;). Thus,
Jl...fj~-~Jn+1 = {0}, a contradiction. Therefore, there exists j € {1,...,n +
1} such that I - IAJ -+ I,41 equals to zero. Hence {0} is a strongly n-absorbing
of R. O

Theorem 5.4. Let R be a commutative u-ring. Then R satisfies Conjecture one,
that is every n-absorbing ideal of R is a strongly n-absorbing ideal of R.
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Proof. Let R be a commutative u-ring. Suppose that I is a proper n-absorbing
ideal of R. Then the quotient ring R/I is a u-ring by [30, Proposition 1.3] and {0}
is an n-absorbing ideal of R/I. Therefore, {0} is a strongly n-absorbing of R/I by
Lemma Hence [ is a strongly n-absorbing ideal of R. |

We recall from [30] that a ring A is called a um-ring if whenever an R-module
equal to a finite union of submodules must be equal to one of them.

Remark 5.5. Let R be a commutative ring and assume that R contains an infinite
set S such that  — y is a unit for all z # y in S. Then R is a um-ring by [30),
Proposition 1.7]. It is shown [30, Theorem 2.3] that a ring R is a um-ring if and only
if R/M is infinite for every maximal ideal M of R. It is shown [30, Theorem 2.6] that
a ring R is an u-ring if and only if R/M is infinite or Ry is a Bezout ring for every
maximal ideal M of R. Hence in view of [30, Theorem 2.3] and [30] Theorem 2.6],
we conclude that every um-ring is a u-ring. The converse is not true, for let R = Z.
Then R is a u-ring. Since R/M is finite for every maximal ideal M of R, we conclude
that R is not a um-ring.

In view of Remark 5.5, we have the following result.

Theorem 5.6. Let R be a um-ring. Then R is a u-ring.
The proof of the following result is similar to the proof of [30), Proposition 1.7].

Theorem 5.7. Let R be a commutative ring with 1 # 0, n be a positive integer,
and I be a proper ideal of R. Suppose that R contains an infinite set S such that
x —y is a unit for all x # y in S. Then R is a u-ring, and hence I is a strongly
n-absorbing of R if and only if I is an n-absorbing ideal of R.

Proof. Suppose that R contains an infinite set S such that x — y is a unit for all
x # y in S. We show that R is a u-ring. Deny. Let I be an ideal of R and p > 1
be an integer such that I C |JY_; I;, and suppose that for every i € {1,...,p}, we
have I ¢ I;. We may assume that for each i € {1,...,p}, we have I ¢ Ujzi L-
Hence for each 1 < i < 2, there exists a; € I such that a; ¢ U#i I;. Consider
the set H = {a; + zag |z € S}. Then for every x € S, we have a1 + zay € I and
a; + xag ¢ Is. Since H C I and HN I, = (), we have H C Uj;,é2 I;. Since H is
infinite, there exist x1 # xo in S such that a1 + z1as and a1 + x2as € I; for some
i # 2. Hence (x1 — x2)as € I;, and thus ag € I;, which is a contradiction. Thus, R
is a u-ring. O

Remark 5.8. One can give an alternative proof of Theorem 5.7 Note that since
R contains an infinite set .S such that x —y is a unit for all x # y in S, we conclude
that R is a um-ring by [30, Proposition 1.7]. Hence R is a u-ring by Theorem

Theorem 5.9. Let A be a u-domain with quotient field K, M be a K -vector space,
and R = A(+)M. Then Conjecture one holds in R.

1950123-12



J. Algebra Appl. 2019.18. Downloaded from www.worldscientific.com

by AMERICAN UNIVERSITY OF SHARJAH on 07/07/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

(m, n)-Closed ideals in trivial ring extension

Proof. Since A satisfies Conjecture one by Theorem [4] we conclude that R
satisfies Conjecture one by Theorem B4 |

The following is an example of a ring that is not a w-ring but it satisfies Con-
jecture one.

Example 5.10. Let R = Z3(+)Z3[X]. Then R satisfies Conjecture one by Theo-
rem It is clear that M = {0}(+)Z3[X] is the only maximum ideal of R. Since
neither R/M is infinite (note that R/M 2 Zs3) nor Ry (note that Ry = R) is a
Bezout ring, we conclude that R is not a u-ring by [30, Theorem 2.6]. Note that R
is not a um-ring by Theorem [5.6}

Theorem 5.11. Let A be a commutative um-ring, M be an A-module, and R =
A(+)M. Then Congecture one holds in R.

Proof. Let H be a maximal ideal of R. Then H = L(4)M for some maximal ideal
L of A. Since R/H = A/L and A is a um-ring, we conclude that A/L is infinite,
and thus R/H is infinite. Hence R is a um-ring by [30, Theorem 2.3]. Thus, R is a
u-ring by Theorem 5.6l Hence R satisfies Conjecture one by Theorem 54 |

6. (m,n)-Closed Ideals in Trivial Ring Extension

Let R be a commutative ring with 1 # 0. We recall from [3] that a proper ideal I
of R is called an (m,n)-closed ideal if 2™ € I for x € R implies 2™ € I.

Theorem 6.1. Let A be a ring, M be an R-module, and R = A(+)M . Suppose
that J = I(+)N is a proper ideal of R, where I is a proper ideal of A and N is a
submodule of M such that IM C N. If I is an (m,n)-closed ideal of A for some
integers 0 < n < m, then J is an (m,n + 1)-closed ideal of R.

Proof. Suppose that I is an (m, n)-closed ideal of A for some integers 0 < n < m.
Let x = (a,c) € R and suppose that 2™ = (a™, ma™ 'c) € J. Since I is an (m,n)-
closed ideal of A, we conclude that (a"™*, (n + 1)a"c) = 2"t € J. Thus J is an
(m,n + 1)-closed ideal of R. O

In view of Theorem [6.1] the following is an example of an (3, 2)-closed ideal I of
Z but the proper ideal J = I(+)I of R = Z(+)Z is not an (3, 2)-closed ideal of R.

Example 6.2. Let R = Z(+)Z, p # 2 be a positive prime number of Z, [ = p*Z a
proper ideal of Z, and J = I(+4)I. Then J is a proper ideal of R and [ is an (3, 2)-
closed ideal of Z by [3, Corollary 3.3]. Let = = (p*,p) € R. Then 2 = (p%,3p°) € J.
Since p # 2, we have 22 = (p*,2p?) ¢ J.

Lemma 6.3. Let A be a ring, M be an R-module, and R = A(+)M. Suppose
that J = I(+)N is a proper ideal of R, where I is an (m,n)-closed ideal of A for
some integers 0 < n < m, and N is a submodule of M such that IM C N. Let
x = (a,c) € R for somea € A and c € M. Then o™ € J if and only if a™ € I.
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Proof. Suppose that 2™ = (a™,ma™ 'c) € J. Then it is clear that a™ € I.
Conversely, suppose that a™ € I. Since I is an (m, n)-closed ideal of R, a™ € I.

Since n < m — 1, we conclude that ¢! € I. Since IM C N and a™ ! € I, we

conclude that 2™ = (a™, ma™ 1c) € J. m|

Theorem 6.4. Let A be a ring, M be an R-module, and R = A(+)M. Suppose
that J = I(+)N is a proper ideal of R, where I is a proper ideal of A and N is
a submodule of M such that IM C N. Let 0 < n < m be integers. The following
statements are equivalent:

(1) J is an (m,n)-closed ideal of R.
(2) I is an (m,n)-closed ideal of A and whenever a™ € I for some a € A implies
na"'M C N.

Proof. (1) = (2). Suppose that J is an (m,n)-closed ideal of R. Then it is clear
that I is an (m,n)-closed ideal of A. Assume that a™ € I for some a € A. Let
¢ € M and x = (a,c). Since a™ € I, we have 2 € R by Lemma Since J
is an (m,n)-closed ideal of R, we conclude that z" = (a",na""'c¢) € R. Thus,
na*M C N.

(2) = (1). Suppose that I is an (m,n)-closed ideal of A and whenever a™ € I
for some a € A implies na" 'M C N. Let x = (a,c) € R for somea € Aand c € M
and suppose that 2™ = (a™,ma™ 1c) € J. Since a™ € I and I is an (m, n)-closed
ideal of A, we conclude that " € A and na"~'c € N. Thus, 2" = (a™,na""'c) € J.
Hence J is an (m, n)-closed ideal of R. m|

Theorem 6.5. Let A be a ring, M be an R-module, m and n integers with 1 <
n < m, I be a proper ideal of A, and R = A(+)M. Suppose that char(A)|n. Then
the following statements are equivalent:

(1) J =I(+)N is an (m,n)-closed ideal of R for every submodule N of M where
IM CN.
(2) I is an (m,n)-closed ideal of A.

Proof. (1) = (2). It is clear by Theorem [6-4]

(2) = (1). Let N be a submodule of M such that IM C N. Since char(A) |n,
we conclude that whenever a™ € I for some a € A implies na™ 'M = 0 C N,
where 0,, is the additive identity of M. Thus, J = I(+)N is an (m,n)-closed ideal
of R by Theorem [6.4]. m|

Theorem 6.6. Let D be an integral domain, R = D(+)D, m and n integers with
1 <n<m,and I = p*D, where p is a prime element of D and k is a positive
integer. Suppose that m > k and char(D) # n. Then the following statements are
equivalent:

(1) J =I(+)p'D is an (m,n)-closed ideal of R for some integer i > 1.
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(2) One of the following three cases must hold:

(a) k<n<mandi<k.
(b) n="k, and 1 <i<k.
(¢) n=i=k, andpl|k-1p (in D), where 1p is the identity of D.

Proof. (1) = (2). Suppose that J = I(+)p'D is an (m,n)-closed ideal of R for
some integer 7 > 1. Since J is an ideal of R, we conclude that I C p’D. Hence i < k.
Since J = I(+)p'D is an (m,n)-closed ideal of R, we conclude that I is an (m,n)-
closed ideal of D and whenever a™ € I for some a € D implies na"~'D C p'D
by Theorem [6.4] Since m > k, p™ € I and hence p" € I and np" 'D C p'D.
In particular, np”~! € p’D. Since p" € I, we conclude that n > k. Suppose that
n = k. Then np"~! = kpF~! € p'D if and only if either 1 < i < k or i = k and
P ‘ k- ]-D-

(2) = (1). In view of proof (1) = (2) above, one can easily verify that if (a)
or (b) or (c) holds, then I is an (m,n)-closed ideal of D and whenever ™ € I
for some a € D implies na" 1D C p'D. Hence J is an (m,n)-closed ideal of R by
Theorem [6.4 |

Definition 6.7. Let p be a prime element of an integral domain D. Suppose that
p¥ | d for some d € D and a positive integer w but p¥*! { d. Then we write p* || d.

Theorem 6.8. Let D be an integral domain, R = D(+)D, m and n integers with
1 <n<m, and I = pFD, where p is a prime element of D and k is a positive
integer. Suppose that m < k and char(D) # n. Let v = [£7 and u = [E]. Then
the following statements are equivalent:

(1) J =I(+)p'D is an (m,n)-closed ideal of R for some integer i > 1.
(2) One of the following three cases must hold:

(a) u<n<mandi<k.
(b) u=n,ptn-1p (in D), andi <v(n—1) < k.
(¢) u=mn,p*||n-1p (in D), and i < min{v(n — 1) + w, k}.

Proof. (1) = (2). Suppose that J = I(+)p'D is an (m,n)-closed ideal of R for
some integer ¢ > 1. Since J is an ideal of R, we conclude that I C piD. Hence 7 < k.
It is clear that v = [%] is the smallest positive integer where (p¥)™ € I. Also, it
is clear that u is the smallest positive integer where (p*)* € I. Since J = I(+)p'D
is an (m,n)-closed ideal of R and 1 < n < m, we conclude that u < n < m.
Since J = I(+)p'D is an (m, n)-closed ideal of R, we conclude that I is an (m,n)-
closed ideal of D and whenever ™ € I for some a € D implies na"~'D C p'D
by Theorem [l Hence since (p¥)™ € I, we conclude that n(p¥)"~! € p’D by
Theorem B4l If v < n < m, then v < n — 1 and thus n(p¥)"~! € p*D = I (note
that (p¥)* € I) and ¢ < k. Suppose that n = w and p t n-1p (in D). Since u
is the smallest positive integer where (p¥)* € I and p { n - 1p, we conclude that
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v(n —1) < k and n(p?)"~! € p'D if and only if i < v(n — 1) < k. Suppose that
u=mnand p*||n-1p (in D). Since i < q, we conclude that n(p?)"~! € p'D if and
only if ¢ < min{v(n — 1) + w, k}.

(2) = (1). In view of proof (1) = (2) above, one can easily verify that if (a)
or (b) or (c¢) holds, then I is an (m,n)-closed ideal of D and whenever ™ € T
for some a € D implies na™'D C p'D. Hence J is an (m,n)-closed ideal of R by
Theorem 641 O

Let R be an integral domain, I = p*R, where p is a prime element of R and k
is a positive integer, and m and n be fixed positive integers with 1 < n < m. The
authors in [3, Theorem 3.1] determined the set {k € N|p*R is (m, n)-closed}. We
recall the following result.

Theorem 6.9 ([3, Theorem 3,1]). Let D be an integral domain, m andn integers
with 1 < n < m, and I = p*D, where p is a prime element of D and k is a positive
integer. Then the following statements are equivalent:

(1) I is an (m,n)-closed ideal of D.

(2) If m = bn + ¢ for integers b and ¢ with b > 2 and 0
ke {1,...,n}. If m = n+ ¢ for an integer ¢ with 1
kelUp_{mi+h|i€Z and 0 <ic <n— h}.

n — 1, then
n — 1, then

C
C

VARVAN

<
<

In view of Theorems[6.0, [6.8] and 6.9, we have the following result.

Theorem 6.10. Let D be an integral domain, R = D(+)D, m and n integers with
1 <n<m,and I = p*D, where p is a prime element of D and k is a positive
integer. Suppose that char(D) # n. Then the following statements are equivalent:

(1) J =I(+)p'D is an (m,n)-closed ideal of R for some integer i > 1.
(2) If m = bn + ¢ for integers b and ¢ with b > 2 and 0 < ¢ < n — 1, then
ke {1,...,n} and one of the following three cases must hold:

(a) k<n<mandi<k.

(b) n=k, and 1 <i<k.

(¢) n=i=k,andpl|k-1p (in D), where 1p is the identity of D.

If m =n+c for an integer ¢ with 1 <c<n-—1, then k € |J;_;{mi+h|iecZ

and 0 <ic <n—h} and one of the following three cases must hold:
Letv=[£] and u = [E]. Then

(a) u<n<mandi<k.

(b) u=n,ptn-1p (in D), and i <v(n—1) < k.

(¢) u=mn, p*|n-1p (in D), and i < min{v(n — 1) + w, k}.

Proof. (1) = (2). Suppose that J = I(+)p'D is an (m,n)-closed ideal of R for
some integer ¢ > 1. Then I is an (m, n)-closed ideal of D by Theorem 6.4l Suppose
that m = bn+c for integers b and ¢ with b > 2and 0 < ¢ <n—1.Thenk € {1,...,n}
by Theorem [ Hence m > k. Thus we are done by Theorem Suppose that
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m = n + c¢ for an integer ¢ with 1 < ¢ <n — 1. Then k € UZZl{mi—i—hH € Z and
0 <ic <n—h} by Theorem[6.9 Thus, m < k. Hence we are done by Theorem [6.8]

(2) = (1). Suppose that k € {1,...,n} and (a) or (b) or (¢) holds. Since
m > k, we are done by Theorem Suppose that m = n + ¢ for an integer ¢ with
1<c<n-landkelJ;_{mi+h|i€Zand 0 <ic<n—h}and (a)or (b) or
(¢) holds. Since m < k, we are done by Theorem B.8] O

In view of Theorems and [£9 we have the following result.

Theorem 6.11. Let D be an integral domain, I = p*D, where p is a prime element
of D and k is a positive integer, M be a D-module, R = D(+)M, J = I(+)N is a
proper ideal of R, where N is a submodule of M such that IM C N, and m and n
integers with 1 < n < m. Then the following statements are equivalent:

(1) I is an (m,n)-closed ideal of D and J is an (m,n 4+ 1)-closed ideal of R.

(2) If m = bn + ¢ for integers b and ¢ with b > 2 and 0 < ¢ < n — 1, then
ke {l,...,n}. If m = n+ c for an integer ¢ with 1 < ¢ < n — 1, then
kelUp_{mi+h|i€Z and 0 <ic <n— h}.

Proof. (1) = (2). Suppose that I is an (m,n)-closed ideal of D and J is an
(m,n + 1)-closed ideal of R. Since I is an (m,n)-closed ideal of D, we are done by
Theorem [6.9]

(2) = (1). By Theorem [6.9] I is an (m,n)-closed ideal of D. Hence J is an
(m,n + 1)-closed ideal of R by Theorem [E.1]. O

Theorem 6.12. Let A be an integral domain with quotient field K, M be a K-
vector space, and R = A(+)M . Then the following stalements are equivalent:

IN

(1) Ewvery proper ideal of A is an (m,n)-closed ideal of A for some integers 1
n<m.

(2) Every proper ideal of R is an (m,n)-closed ideal of R for some integers 1
n<m.

IN

Proof. (1) = (2). Suppose that every proper ideal of A is an (m,n)-closed ideal
of A for some integers 1 < n < m. Let J be an ideal of R. Since M is a divisible
A-module, we have J = I(+)M for some proper ideal I of A or J = {0}(+)N
for some A-submodule N of M by ([I, Corollary 3.4]). Suppose that J = I(+)M
for some proper ideal I. Since I is an (m,n)-closed ideal of A for some integers
1 < n < m,itis clear that J = I(+)M is an (m,n)-closed ideal of R. Suppose
that J = {0}(+)N for some A-submodule N of M. Since A is an integral domain,
we have J = {0}(+)N is an (m,2)-closed ideal of R for every integer m > 3.
Hence every proper ideal of R is an (m,n)-closed ideal of R for some integers
1<n<m.

(2) = (1). It is clear. m|
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